Loading…

Ecological consequences of Great Lakes salmon subsidies for stream-resident brook and brown trout

Introduced Pacific salmon (Oncorhynchus spp.) deliver novel, pulsed resource subsidies to Great Lakes streams. We explored interactions between native brook trout (Salvelinus fontinalis) and non-native brown trout (Salmo trutta) in the context of this resource pulse. Diets surveyed before and during...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of fisheries and aquatic sciences 2020-11, Vol.77 (11), p.1758-1771
Main Authors: Hermann, Nathan T, Chaloner, Dominic T, Gerig, Brandon S, Lamberti, Gary A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-711c313f9d049dbf6ac3aafbc8e8f8ecb18c6322ce1b75060899b4256a7229a3
cites cdi_FETCH-LOGICAL-c512t-711c313f9d049dbf6ac3aafbc8e8f8ecb18c6322ce1b75060899b4256a7229a3
container_end_page 1771
container_issue 11
container_start_page 1758
container_title Canadian journal of fisheries and aquatic sciences
container_volume 77
creator Hermann, Nathan T
Chaloner, Dominic T
Gerig, Brandon S
Lamberti, Gary A
description Introduced Pacific salmon (Oncorhynchus spp.) deliver novel, pulsed resource subsidies to Great Lakes streams. We explored interactions between native brook trout (Salvelinus fontinalis) and non-native brown trout (Salmo trutta) in the context of this resource pulse. Diets surveyed before and during salmon spawning showed that, regardless of species, trout consumed 4.5-fold more biomass during than before salmon runs. Brook trout grew more quickly than brown trout under controlled feeding regimes due, in part, to their higher food conversion efficiency of 36% compared with 21%. Bioenergetics model simulations explored the influence of temperature on the exploitation of resource pulses and found 35% lower growth rates and increased gorging at colder temperatures. Overall, we found evidence that brook trout and brown trout foraging and growth are modulated by the salmon resource pulse, especially through gorging on eggs. However, these species exhibit distinct physiological adaptations and environmental preferences that may influence their ultimate capacity to exploit resource pulses. The effects of environmental conditions and salmon subsidies on stream-resident trout have broader consequences for fisheries management and conservation efforts.
doi_str_mv 10.1139/cjfas-2020-0086
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A639736720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639736720</galeid><sourcerecordid>A639736720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-711c313f9d049dbf6ac3aafbc8e8f8ecb18c6322ce1b75060899b4256a7229a3</originalsourceid><addsrcrecordid>eNqVks9vFCEcxUmjSdfq2SvRkwdafiwMc2ya2jbZaGJ76I18h4F1trOwBSbV_16m68EmG43hALx83vuG8BB6z-gpY6I9sxsPmXDKKaFUqyO0YJxK0kghXqEFbagiSvL7Y_Qm5w2ljEtGFwgubRzjerAwYhtDdo-TC9ZlHD2-Sg4KXsFDvWYYtzHgPHV56Icq-JhwLpXYkuSq5kLBXYrxAUPo59NTwCXFqbxFrz2M2b37vZ-gu8-XdxfXZPX16ubifEWsZLyQhjErmPBtT5dt33kFVgD4zmqnvXa2Y9oqwbl1rGskVVS3bbfkUkHDeQviBH3cx-5SrG_IxWzilEKdaPhSa9o2gsu_U3JJG91qWimyp9YwOjMEH0sCu3bBJRhjcH6o8rkSNVM1fOY_HODtbng0f0KnB6C6ercd7MHUTy8MlSnuR1nDlLO5uf32H-yXl-zZnrUp5pycN7s0bCH9NIyauUrmuUpmrpKZq1QdfO8IydbPdpDs93-afgHBUMpL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454078980</pqid></control><display><type>article</type><title>Ecological consequences of Great Lakes salmon subsidies for stream-resident brook and brown trout</title><source>NRC Research Press</source><creator>Hermann, Nathan T ; Chaloner, Dominic T ; Gerig, Brandon S ; Lamberti, Gary A</creator><creatorcontrib>Hermann, Nathan T ; Chaloner, Dominic T ; Gerig, Brandon S ; Lamberti, Gary A</creatorcontrib><description>Introduced Pacific salmon (Oncorhynchus spp.) deliver novel, pulsed resource subsidies to Great Lakes streams. We explored interactions between native brook trout (Salvelinus fontinalis) and non-native brown trout (Salmo trutta) in the context of this resource pulse. Diets surveyed before and during salmon spawning showed that, regardless of species, trout consumed 4.5-fold more biomass during than before salmon runs. Brook trout grew more quickly than brown trout under controlled feeding regimes due, in part, to their higher food conversion efficiency of 36% compared with 21%. Bioenergetics model simulations explored the influence of temperature on the exploitation of resource pulses and found 35% lower growth rates and increased gorging at colder temperatures. Overall, we found evidence that brook trout and brown trout foraging and growth are modulated by the salmon resource pulse, especially through gorging on eggs. However, these species exhibit distinct physiological adaptations and environmental preferences that may influence their ultimate capacity to exploit resource pulses. The effects of environmental conditions and salmon subsidies on stream-resident trout have broader consequences for fisheries management and conservation efforts.</description><identifier>ISSN: 0706-652X</identifier><identifier>EISSN: 1205-7533</identifier><identifier>DOI: 10.1139/cjfas-2020-0086</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: NRC Research Press</publisher><subject>Adaptation ; Bioenergetics ; Case studies ; Conservation ; Ecological effects ; Ecosystems ; Eggs ; Environmental aspects ; Environmental conditions ; Environmental effects ; Exploitation ; Feeding habits ; Feeding preferences ; Feeding regimes ; Fish eggs ; Fisheries ; Fisheries management ; Fishery management ; Food and nutrition ; Food chains ; Food consumption ; Food conversion ; Food supply ; Foraging ; Freshwater ; Growth ; Growth rate ; Introduced species ; Invasive species ; Lakes ; Modelling ; Oncorhynchus ; Pacific salmon ; Predation ; Resource exploitation ; Salmo trutta ; Salmon ; Salmoniformes ; Salvelinus fontinalis ; Simulation ; Spawning ; Spawning populations ; Streams ; Subsidies ; Trout ; Varieties ; Water temperature</subject><ispartof>Canadian journal of fisheries and aquatic sciences, 2020-11, Vol.77 (11), p.1758-1771</ispartof><rights>COPYRIGHT 2020 NRC Research Press</rights><rights>2020 Published by NRC Research Press</rights><rights>Copyright 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-711c313f9d049dbf6ac3aafbc8e8f8ecb18c6322ce1b75060899b4256a7229a3</citedby><cites>FETCH-LOGICAL-c512t-711c313f9d049dbf6ac3aafbc8e8f8ecb18c6322ce1b75060899b4256a7229a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/cjfas-2020-0086$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/cjfas-2020-0086$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2932,27924,27925,64428,65234</link.rule.ids></links><search><creatorcontrib>Hermann, Nathan T</creatorcontrib><creatorcontrib>Chaloner, Dominic T</creatorcontrib><creatorcontrib>Gerig, Brandon S</creatorcontrib><creatorcontrib>Lamberti, Gary A</creatorcontrib><title>Ecological consequences of Great Lakes salmon subsidies for stream-resident brook and brown trout</title><title>Canadian journal of fisheries and aquatic sciences</title><description>Introduced Pacific salmon (Oncorhynchus spp.) deliver novel, pulsed resource subsidies to Great Lakes streams. We explored interactions between native brook trout (Salvelinus fontinalis) and non-native brown trout (Salmo trutta) in the context of this resource pulse. Diets surveyed before and during salmon spawning showed that, regardless of species, trout consumed 4.5-fold more biomass during than before salmon runs. Brook trout grew more quickly than brown trout under controlled feeding regimes due, in part, to their higher food conversion efficiency of 36% compared with 21%. Bioenergetics model simulations explored the influence of temperature on the exploitation of resource pulses and found 35% lower growth rates and increased gorging at colder temperatures. Overall, we found evidence that brook trout and brown trout foraging and growth are modulated by the salmon resource pulse, especially through gorging on eggs. However, these species exhibit distinct physiological adaptations and environmental preferences that may influence their ultimate capacity to exploit resource pulses. The effects of environmental conditions and salmon subsidies on stream-resident trout have broader consequences for fisheries management and conservation efforts.</description><subject>Adaptation</subject><subject>Bioenergetics</subject><subject>Case studies</subject><subject>Conservation</subject><subject>Ecological effects</subject><subject>Ecosystems</subject><subject>Eggs</subject><subject>Environmental aspects</subject><subject>Environmental conditions</subject><subject>Environmental effects</subject><subject>Exploitation</subject><subject>Feeding habits</subject><subject>Feeding preferences</subject><subject>Feeding regimes</subject><subject>Fish eggs</subject><subject>Fisheries</subject><subject>Fisheries management</subject><subject>Fishery management</subject><subject>Food and nutrition</subject><subject>Food chains</subject><subject>Food consumption</subject><subject>Food conversion</subject><subject>Food supply</subject><subject>Foraging</subject><subject>Freshwater</subject><subject>Growth</subject><subject>Growth rate</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Lakes</subject><subject>Modelling</subject><subject>Oncorhynchus</subject><subject>Pacific salmon</subject><subject>Predation</subject><subject>Resource exploitation</subject><subject>Salmo trutta</subject><subject>Salmon</subject><subject>Salmoniformes</subject><subject>Salvelinus fontinalis</subject><subject>Simulation</subject><subject>Spawning</subject><subject>Spawning populations</subject><subject>Streams</subject><subject>Subsidies</subject><subject>Trout</subject><subject>Varieties</subject><subject>Water temperature</subject><issn>0706-652X</issn><issn>1205-7533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqVks9vFCEcxUmjSdfq2SvRkwdafiwMc2ya2jbZaGJ76I18h4F1trOwBSbV_16m68EmG43hALx83vuG8BB6z-gpY6I9sxsPmXDKKaFUqyO0YJxK0kghXqEFbagiSvL7Y_Qm5w2ljEtGFwgubRzjerAwYhtDdo-TC9ZlHD2-Sg4KXsFDvWYYtzHgPHV56Icq-JhwLpXYkuSq5kLBXYrxAUPo59NTwCXFqbxFrz2M2b37vZ-gu8-XdxfXZPX16ubifEWsZLyQhjErmPBtT5dt33kFVgD4zmqnvXa2Y9oqwbl1rGskVVS3bbfkUkHDeQviBH3cx-5SrG_IxWzilEKdaPhSa9o2gsu_U3JJG91qWimyp9YwOjMEH0sCu3bBJRhjcH6o8rkSNVM1fOY_HODtbng0f0KnB6C6ercd7MHUTy8MlSnuR1nDlLO5uf32H-yXl-zZnrUp5pycN7s0bCH9NIyauUrmuUpmrpKZq1QdfO8IydbPdpDs93-afgHBUMpL</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Hermann, Nathan T</creator><creator>Chaloner, Dominic T</creator><creator>Gerig, Brandon S</creator><creator>Lamberti, Gary A</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QG</scope><scope>7QH</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope></search><sort><creationdate>20201101</creationdate><title>Ecological consequences of Great Lakes salmon subsidies for stream-resident brook and brown trout</title><author>Hermann, Nathan T ; Chaloner, Dominic T ; Gerig, Brandon S ; Lamberti, Gary A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-711c313f9d049dbf6ac3aafbc8e8f8ecb18c6322ce1b75060899b4256a7229a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Bioenergetics</topic><topic>Case studies</topic><topic>Conservation</topic><topic>Ecological effects</topic><topic>Ecosystems</topic><topic>Eggs</topic><topic>Environmental aspects</topic><topic>Environmental conditions</topic><topic>Environmental effects</topic><topic>Exploitation</topic><topic>Feeding habits</topic><topic>Feeding preferences</topic><topic>Feeding regimes</topic><topic>Fish eggs</topic><topic>Fisheries</topic><topic>Fisheries management</topic><topic>Fishery management</topic><topic>Food and nutrition</topic><topic>Food chains</topic><topic>Food consumption</topic><topic>Food conversion</topic><topic>Food supply</topic><topic>Foraging</topic><topic>Freshwater</topic><topic>Growth</topic><topic>Growth rate</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Lakes</topic><topic>Modelling</topic><topic>Oncorhynchus</topic><topic>Pacific salmon</topic><topic>Predation</topic><topic>Resource exploitation</topic><topic>Salmo trutta</topic><topic>Salmon</topic><topic>Salmoniformes</topic><topic>Salvelinus fontinalis</topic><topic>Simulation</topic><topic>Spawning</topic><topic>Spawning populations</topic><topic>Streams</topic><topic>Subsidies</topic><topic>Trout</topic><topic>Varieties</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermann, Nathan T</creatorcontrib><creatorcontrib>Chaloner, Dominic T</creatorcontrib><creatorcontrib>Gerig, Brandon S</creatorcontrib><creatorcontrib>Lamberti, Gary A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian journal of fisheries and aquatic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermann, Nathan T</au><au>Chaloner, Dominic T</au><au>Gerig, Brandon S</au><au>Lamberti, Gary A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological consequences of Great Lakes salmon subsidies for stream-resident brook and brown trout</atitle><jtitle>Canadian journal of fisheries and aquatic sciences</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>77</volume><issue>11</issue><spage>1758</spage><epage>1771</epage><pages>1758-1771</pages><issn>0706-652X</issn><eissn>1205-7533</eissn><abstract>Introduced Pacific salmon (Oncorhynchus spp.) deliver novel, pulsed resource subsidies to Great Lakes streams. We explored interactions between native brook trout (Salvelinus fontinalis) and non-native brown trout (Salmo trutta) in the context of this resource pulse. Diets surveyed before and during salmon spawning showed that, regardless of species, trout consumed 4.5-fold more biomass during than before salmon runs. Brook trout grew more quickly than brown trout under controlled feeding regimes due, in part, to their higher food conversion efficiency of 36% compared with 21%. Bioenergetics model simulations explored the influence of temperature on the exploitation of resource pulses and found 35% lower growth rates and increased gorging at colder temperatures. Overall, we found evidence that brook trout and brown trout foraging and growth are modulated by the salmon resource pulse, especially through gorging on eggs. However, these species exhibit distinct physiological adaptations and environmental preferences that may influence their ultimate capacity to exploit resource pulses. The effects of environmental conditions and salmon subsidies on stream-resident trout have broader consequences for fisheries management and conservation efforts.</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>NRC Research Press</pub><doi>10.1139/cjfas-2020-0086</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0706-652X
ispartof Canadian journal of fisheries and aquatic sciences, 2020-11, Vol.77 (11), p.1758-1771
issn 0706-652X
1205-7533
language eng
recordid cdi_gale_infotracacademiconefile_A639736720
source NRC Research Press
subjects Adaptation
Bioenergetics
Case studies
Conservation
Ecological effects
Ecosystems
Eggs
Environmental aspects
Environmental conditions
Environmental effects
Exploitation
Feeding habits
Feeding preferences
Feeding regimes
Fish eggs
Fisheries
Fisheries management
Fishery management
Food and nutrition
Food chains
Food consumption
Food conversion
Food supply
Foraging
Freshwater
Growth
Growth rate
Introduced species
Invasive species
Lakes
Modelling
Oncorhynchus
Pacific salmon
Predation
Resource exploitation
Salmo trutta
Salmon
Salmoniformes
Salvelinus fontinalis
Simulation
Spawning
Spawning populations
Streams
Subsidies
Trout
Varieties
Water temperature
title Ecological consequences of Great Lakes salmon subsidies for stream-resident brook and brown trout
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20consequences%20of%20Great%20Lakes%20salmon%20subsidies%20for%20stream-resident%20brook%20and%20brown%20trout&rft.jtitle=Canadian%20journal%20of%20fisheries%20and%20aquatic%20sciences&rft.au=Hermann,%20Nathan%20T&rft.date=2020-11-01&rft.volume=77&rft.issue=11&rft.spage=1758&rft.epage=1771&rft.pages=1758-1771&rft.issn=0706-652X&rft.eissn=1205-7533&rft_id=info:doi/10.1139/cjfas-2020-0086&rft_dat=%3Cgale_cross%3EA639736720%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-711c313f9d049dbf6ac3aafbc8e8f8ecb18c6322ce1b75060899b4256a7229a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454078980&rft_id=info:pmid/&rft_galeid=A639736720&rfr_iscdi=true