Loading…
Sharp Kolmogorov–Remez-Type Inequalities for Periodic Functions of Low Smoothness
In the case where either r = 2, k = 1 or r = 3, k = 1, 2, for any q , p ≥ 1, β ∈ [0, 2π), and a Lebesgue-measurable set B ⊂ I 2π ≔ [−π/2, 3π/2], μB ≤ β , we prove a sharp Kolmogorov–Remez-type inequality f k q ≤ φr − k q E 0 φr L α p I 2 π / B 2 m f L p α I 2 π / B F r ∞ 1 − α , f ∈ L...
Saved in:
Published in: | Ukrainian mathematical journal 2020-09, Vol.72 (4), p.555-567 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the case where either
r
= 2,
k
= 1 or
r
= 3,
k
= 1, 2, for any
q
,
p
≥ 1,
β
∈ [0, 2π), and a Lebesgue-measurable set
B
⊂
I
2π
≔ [−π/2, 3π/2],
μB
≤
β
, we prove a sharp Kolmogorov–Remez-type inequality
f
k
q
≤
φr
−
k
q
E
0
φr
L
α
p
I
2
π
/
B
2
m
f
L
p
α
I
2
π
/
B
F
r
∞
1
−
α
,
f
∈
L
∞
r
,
with α = min {1 −
k
/
r
, (
r
−
k
+ 1/
q
)/(
r
+ 1/
p
)}, where φ
r
is the perfect Euler spline of order
r,
E
0
f
L
p
G
is the best approximation of
f
by constants in
Lp
(
G
)
,
B
2
m
=
π
−
2
m
2
π
+
2
m
2
, and
m
=
m
(
β
) ε [0
,
π) is uniquely defined by
β.
We also establish a sharp Kolmogorov–Remez-type inequality, which takes into account the number of sign changes of the derivatives. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-020-01800-2 |