Loading…

Double-Controlled Quasi IM/I-Metric Spaces

One of the well-studied generalizations of a metric space is known as a partial metric space. The partial metric space was further generalized to the so-called M-metric space. In this paper, we introduce the Double-Controlled Quasi M-metric space as a new generalization of the M-metric space. In our...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2023-04, Vol.15 (4)
Main Authors: Ayoob, Irshad, Chuan, Ng Zhen, Mlaiki, Nabil
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the well-studied generalizations of a metric space is known as a partial metric space. The partial metric space was further generalized to the so-called M-metric space. In this paper, we introduce the Double-Controlled Quasi M-metric space as a new generalization of the M-metric space. In our new generalization of the M-metric space, the symmetry condition is not necessarily satisfied and the triangle inequality is controlled by two binary functions. We establish some fixed point results, along with the examples and applications to illustrate our results.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15040893