Loading…

No evidence of a generalized potential ‘cost’ of apical dominance for species that have strong apical dominance

When the shoot apical meristem of plants is damaged or removed, fecundity and/or plant growth may suffer (under-compensation), remain unaffected (compensation) or increase (overcompensation). The latter signifies a potential ‘cost’ of apical dominance. Using natural populations of 19 herbaceous angi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant ecology 2022-12, Vol.15 (6), p.1168-1184
Main Authors: Finley, Jenna V, Aarssen, Lonnie W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When the shoot apical meristem of plants is damaged or removed, fecundity and/or plant growth may suffer (under-compensation), remain unaffected (compensation) or increase (overcompensation). The latter signifies a potential ‘cost’ of apical dominance. Using natural populations of 19 herbaceous angiosperm species with a conspicuously vertical, apically dominant growth form, we removed (clipped) the shoot apical meristem for replicate plants early in the growing season to test for a potential cost of apical dominance. Clipped and unclipped (control) plants had their near neighbours removed, and were harvested after flowering production had finished but before seed dispersal. Dry mass was measured separately for aboveground body size (shoots), leaves, seeds and fruits; and number of leaves, fruits and seeds per plant were counted. We predicted that: (i) our study species (because of their strong apically dominant growth form) would respond to shoot apical meristem removal with greater branching intensity, and thus overcompensation in terms of fecundity and/or biomass; and (ii) overcompensation is particularly enabled for species that produce smaller but more leaves, and hence with a larger bud bank of axillary meristems available for deployment in branching and/or fruit production. Widely variable compensatory capacities were recorded, and with no significant between-species relationship with leaf size or leafing intensity—thus indicating no generalized potential cost of apical dominance. Overall, the results point to species-specific treatment effects on meristem allocation patterns, and suggest importance for effects involving local variation in resource availability, and between-species variation in phenology, life history traits and susceptibility to herbivory.
ISSN:1752-993X
1752-9921
1752-993X
DOI:10.1093/jpe/rtac053