Loading…

Editorial introduction to J.UCS special issue Challenges for Smart Environments – Human-Centered Computing, Data Science, and Ambient Intelligence I

Modern technologies and various domains of human activities increasingly rely on data science to develop smarter and autonomous systems. This trend has already changed the whole landscape of the global economy becoming more AI-driven. Massive production of data by humans and machines, its availabili...

Full description

Saved in:
Bibliographic Details
Published in:J.UCS (Annual print and CD-ROM archive ed.) 2021-11, Vol.27 (11), p.1149-1151
Main Authors: Baloian, Nelson, Pino, José
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modern technologies and various domains of human activities increasingly rely on data science to develop smarter and autonomous systems. This trend has already changed the whole landscape of the global economy becoming more AI-driven. Massive production of data by humans and machines, its availability for feasible processing with advent of deep learning infrastructures, combined with advancements in reliable information transfer capacities, open unbounded horizons for societal progress in close future. Quite naturally, this brings also new challenges for science and industry. In that context, Internet of things (IoT) is an enormously huge factory of monitoring and data generation. It enables countless devices to act as sensors which record and manipulate data, while requiring efficient algorithms to derive actionable knowledge. Billions of end-users equipped with smart mobile phones are also producing immensely large volumes of data, being it about user interaction or indirect telemetry such as location coordinates. Social networks represent another kind of data-intensive sources, with both structured and unstructured components, containing valuable information about world's connectivity, dynamism, and more. Last but not least, to help businesses run smoothly, today's cloud computing infrastructures and applications are also serviced and managed through measuring huge amounts of data to leverage in various predictive and automation tasks for healthy performance and permanent availability. Therefore, all these technology areas, experts and practitioners, are facing innovation challenges on building novel methodologies, accurate models, and systems for respective data-driven solutions which are effective and efficient. In view of the complexity of contemporary neural network architectures and models with millions of parameters they derive, one of such challenges is related to the concept of explainability of the machine learning models. It refers to the ability of the model to give information which can be interpreted by humans about the reasons for the decision made or recommendation released. These challenges can only be met with a mix of basic research, process modeling and simulation under uncertainty using qualitative and quantitative methods from the involved sciences, and taking into account international standards and adequate evaluation methods. Based on a successful funded collaboration between the American University of Armenia, the University of
ISSN:0948-695X
0948-6968
DOI:10.3897/jucs.76554