Loading…

An Experimental Study on the Effects of Atomized Rain of a High Velocity Waterjet to Downstream Area in Low Ambient Pressure Environment

A better understanding of the atomized rain characteristics in low ambient pressure areas is beneficial in reducing the jeopardizing effect of flood discharge atomization on high-altitude hydropower stations. A random splash experiment is designed with two measurement planes to investigate the effec...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2020-02, Vol.12 (2), p.397
Main Authors: Liu, Dan, Lian, Jijian, Liu, Fang, Liu, Dongming, Ma, Bin, Shi, Jizhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A better understanding of the atomized rain characteristics in low ambient pressure areas is beneficial in reducing the jeopardizing effect of flood discharge atomization on high-altitude hydropower stations. A random splash experiment is designed with two measurement planes to investigate the effects of low ambient pressure on downstream atomized rain under the complicated conditions of low ambient pressure (within 0.60P0~1.00P0) and high waterjet velocity (at a magnitude of 10 m/s). The results demonstrate that the atomized rain (rain intensity ≥ 2 mm/h) downstream, characterized by two-dimensional distribution, can be enhanced by decreasing the ambient pressure and by increasing the inflow discharge. When the ambient pressure decreases at the same inflow discharge, both the distance of the rain intensity lines (40 mm/h, 10 mm/h, 2 mm/h) in the horizontal plane from the constricted nozzle outlet and the average rain amount in the inclined plane within the atomized source ratio of ((0~30) × 10−3)% appear as “linear” growth. With the ambient pressure decreasing by 0.10P0, the range of those characteristic rain intensity lines is expanded by 0.68%~1.37%, and the average rain amount is enlarged by 11.06%~20.48%. When keeping the low ambient pressure unchanged, both the point average rain intensity reduction along the releasing centerline and the surface average rain amount growth with increased inflow discharge all follow an exponential function. The aeration reduction in the waterjet boundary and the resistance reduction in atomized water-droplets are contributing factors for the enhancement effect of low ambient pressure. This study can enable the establishment of a foundation to further predict flood discharge atomization in a high-altitude environment.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12020397