Loading…
Fixed-Point Approaches to Computing Bertrand-Nash Equilibrium Prices Under Mixed-Logit Demand
This article describes numerical methods that exploit fixed-point equations equivalent to the first-order condition for Bertrand-Nash equilibrium prices in a class of differentiated product market models based on the mixed-logit model of demand. One fixed-point equation is already prevalent in the l...
Saved in:
Published in: | Operations research 2011-03, Vol.59 (2), p.328-345 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article describes numerical methods that exploit fixed-point equations equivalent to the first-order condition for Bertrand-Nash equilibrium prices in a class of differentiated product market models based on the mixed-logit model of demand. One fixed-point equation is already prevalent in the literature, and one is novel. Equilibrium prices are computed for the calendar year 2005 new-vehicle market under two mixed-logit models using (i) a state-of-the-art variant of Newton's method applied to the first-order conditions as well as the two fixed-point equations and (ii) a fixed-point iteration generated by our novel fixed-point equation. A comparison of the performance of these methods for a simple model with multiple equilibria is also provided. The analysis and trials illustrate the importance of using fixed-point forms of the first-order conditions for efficient and reliable computations of equilibrium prices. |
---|---|
ISSN: | 0030-364X 1526-5463 |
DOI: | 10.1287/opre.1100.0894 |