Loading…

Lot Sizing with Piecewise Concave Production Costs

We study the lot-sizing problem with piecewise concave production costs and concave holding costs. This problem is a generalization of the lot-sizing problem with quantity discounts, minimum order quantities, capacities, overloading, subcontracting or a combination of these. We develop a dynamic pro...

Full description

Saved in:
Bibliographic Details
Published in:INFORMS journal on computing 2014-09, Vol.26 (4), p.767-779
Main Authors: Koca, Esra, Yaman, Hande, Akturk, M. Selim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the lot-sizing problem with piecewise concave production costs and concave holding costs. This problem is a generalization of the lot-sizing problem with quantity discounts, minimum order quantities, capacities, overloading, subcontracting or a combination of these. We develop a dynamic programming algorithm to solve this problem and answer an open question in the literature: we show that the problem is polynomially solvable when the breakpoints of the production cost function are time invariant and the number of breakpoints is fixed. For the special cases with capacities and subcontracting, the time complexity of our algorithm is as good as the complexity of algorithms available in the literature. We report the results of a computational experiment where the dynamic programming is able to solve instances that are hard for a mixed-integer programming solver. We enhance the mixed-integer programming formulation with valid inequalities based on mixing sets and use a cut-and-branch algorithm to compute better bounds. We propose a state space reduction-based heuristic algorithm for large instances and show that the solutions are of good quality by comparing them with the bounds obtained from the cut-and-branch.
ISSN:1091-9856
1526-5528
1091-9856
DOI:10.1287/ijoc.2014.0597