Loading…
Computational Experiments with Cross and Crooked Cross Cuts
In this paper, we study whether cuts obtained from two simplex tableau rows at a time can strengthen the bounds obtained by Gomory mixed-integer (GMI) cuts based on single tableau rows. We also study whether cross and crooked cross cuts, which generalize split cuts, can be separated in an effective...
Saved in:
Published in: | INFORMS journal on computing 2014-09, Vol.26 (4), p.780-797 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study whether cuts obtained from two simplex tableau rows at a time can strengthen the bounds obtained by Gomory mixed-integer (GMI) cuts based on single tableau rows. We also study whether cross and crooked cross cuts, which generalize split cuts, can be separated in an effective manner for practical mixed-integer programs (MIPs) and can yield a nontrivial improvement over the bounds obtained by split cuts. We give positive answers to both these questions for MIPLIB 3.0 problems. Cross cuts are a special case of the
t
-branch split cuts studied by Li and Richard [Li Y, Richard J-PP (2008) Cook, Kannan and Schrijvers's example revisited.
Discrete Optim.
5:724-734]. Split cuts are 1-branch split cuts, and cross cuts are 2-branch split cuts. Crooked cross cuts were introduced by Dash, Günlük, and Lodi [Dash S, Günlük O, Lodi A (2010) MIR closures of polyhedral sets.
Math Programming
121:33-60] and were shown to dominate cross cuts by Dash, Günlük, and Molinaro [Dash S, Günlük O, Molinaro M (2012b) On the relative strength of different generalizations of split cuts. IBM Technical Report RC25326, IBM, Yorktown Heights, NY]. |
---|---|
ISSN: | 1091-9856 1526-5528 1091-9856 |
DOI: | 10.1287/ijoc.2014.0598 |