Loading…
Computer-Aided Complexity Classification of Dial-a-Ride Problems
In dial-a-ride problems, items have to be transported from a source to a destination. The characteristics of the servers involved as well as the specific requirements of the rides may vary. Problems are defined on some metric space, and the goal is to find a feasible solution that minimizes a certai...
Saved in:
Published in: | INFORMS journal on computing 2004-05, Vol.16 (2), p.120-132 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In dial-a-ride problems, items have to be transported from a source to a destination. The characteristics of the servers involved as well as the specific requirements of the rides may vary. Problems are defined on some metric space, and the goal is to find a feasible solution that minimizes a certain objective function. The structure of these problems allows for a notation similar to the standard notation for scheduling and queueing problems. We introduce such a notation and show how a class of 7,930 dial-a-ride problem types arises from this approach. In examining their computational complexity, we define a partial ordering on the problem class and incorporate it in the computer program DARCLASS. As input DARCLASS uses lists of problems whose complexity is known. The output is a classification of all problems into one of three complexity classes: solvable in polynomial time, NP-hard, or open. For a selection of the problems that form the input for DARCLASS, we exhibit a proof of polynomial-time solvability or NP-hardness. |
---|---|
ISSN: | 1091-9856 1526-5528 1091-9856 |
DOI: | 10.1287/ijoc.1030.0052 |