Loading…
Valid Linear Programming Bounds for Exact Mixed-Integer Programming
Fast computation of valid linear programming (LP) bounds serves as an important subroutine for solving mixed-integer programming problems exactly. We introduce a new method for computing valid LP bounds designed for this application. The algorithm corrects approximate LP dual solutions to be exactly...
Saved in:
Published in: | INFORMS journal on computing 2013-03, Vol.25 (2), p.271-284 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fast computation of valid linear programming (LP) bounds serves as an important subroutine for solving mixed-integer programming problems exactly. We introduce a new method for computing valid LP bounds designed for this application. The algorithm corrects approximate LP dual solutions to be exactly feasible, giving a valid bound. Solutions are repaired by performing a projection and a shift to ensure all constraints are satisfied; bound computations are accelerated by reusing structural information through the branch-and-bound tree. We demonstrate this method to be widely applicable and faster than solving a sequence of exact LPs. Several variations of the algorithm are described and computationally evaluated in an exact branch-and-bound algorithm within the mixed-integer programming framework SCIP (Solving Constraint Integer Programming). |
---|---|
ISSN: | 1091-9856 1526-5528 1091-9856 |
DOI: | 10.1287/ijoc.1120.0501 |