Loading…
Automorphisms of boolean algebras definable by fixed elements
Enriched Boolean algebras are studied. We give an answer to the question asking under which conditions, given a subalgebra of a Boolean algebra, we can uniquely reconstruct an automorphism for which the given subalgebra is a subalgebra of fixed elements. Also we provide a complete description of sub...
Saved in:
Published in: | Algebra and logic 2012-11, Vol.51 (5), p.415-424 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enriched Boolean algebras are studied. We give an answer to the question asking under which conditions, given a subalgebra of a Boolean algebra, we can uniquely reconstruct an automorphism for which the given subalgebra is a subalgebra of fixed elements. Also we provide a complete description of subalgebras of Boolean algebras that are fixed subalgebras of automorphisms definable by fixed elements. It is proved that an automorphism of a Boolean algebra is defined by fixed elements iff it is an involution. Subalgebras of fixed elements of automorphisms of atomic and superatomic Boolean algebras are examined. It is shown that an automorphism of a distributive lattice is defined by fixed elements iff it is an involution, and that this is untrue of finite modular lattices. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-012-9201-x |