Loading…
Iterated Chromatic Subdivisions are Collapsible
The standard chromatic subdivision of the standard simplex is a combinatorial algebraic construction, which was introduced in theoretical distributed computing, motivated by the study of the view complex of layered immediate snapshot protocols. A most important property of this construction is the f...
Saved in:
Published in: | Applied categorical structures 2015-12, Vol.23 (6), p.777-818 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The standard chromatic subdivision of the standard simplex is a combinatorial algebraic construction, which was introduced in theoretical distributed computing, motivated by the study of the view complex of layered immediate snapshot protocols. A most important property of this construction is the fact that the iterated subdivision of the standard simplex is contractible, implying impossibility results in fault-tolerant distributed computing. Here, we prove this result in a purely combinatorial way, by showing that it is collapsible, studying along the way fundamental combinatorial structures present in the category of colored simplicial complexes. |
---|---|
ISSN: | 0927-2852 1572-9095 |
DOI: | 10.1007/s10485-014-9383-6 |