Loading…
Integrated genome and transcriptome analyses solves about one third of the patients with rare developmental disorders and negative first-line molecular investigations
Exome sequencing (ES) represents the first-tier diagnostic test in patients presenting with syndromic developmental delay with suspected monogenic etiology. Yet, about 50% of these patients remain unsolved, arguing the interest to extend the genetic investigations beyond the protein-coding genome an...
Saved in:
Published in: | European journal of human genetics : EJHG 2020, Vol.28 (Suppl 1), p.65-66 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exome sequencing (ES) represents the first-tier diagnostic test in patients presenting with syndromic developmental delay with suspected monogenic etiology. Yet, about 50% of these patients remain unsolved, arguing the interest to extend the genetic investigations beyond the protein-coding genome and to integrate multi-omics approaches. We launched a multi-centric pilot study gathering 53 unsolved patients, after trio ES and array-CGH results, presenting with heterogeneous mild to severe syndromic intellectual disabilities. We performed genome sequencing (GS) combined with transcriptome analysis, highlighting a molecular cause in 32% of the cohort (18/53 patients). GS identified 7 causative structural variants, including 1 deletion, 2 balanced inversions, 1 balanced translocation and 3 complex variants. The molecular readouts of such variants were all validated and furtherly investigated by RNAseq. One deep intronic SNV causing the activation of a cryptic exon, changing the open reading frame of the transcript, was detected by RNAseq. Two frameshift-causing indels were identified in protein-coding regions not captured by ES. Three variants were identified in genes not yet known as disease-causing at the time of the ES analysis. Finally, genotype-phenotype correlation could establish 3 additional diagnoses not identified during the ES analysis. In addition, we detected 2 complex structural variants of unknown significance, not resolvable by short-read GS, as well as new candidate genes identified through RNA-seq differential expression analysis. Overall, GS and RNAseq analyses allowed the identification of the molecular mechanisms underlying 1/3 of previously unsolved patients, and additional candidate variants requiring further investigation (3rd-generation sequencing, 3C techniques) to demonstrate their causality. |
---|---|
ISSN: | 1018-4813 1476-5438 |