Loading…

Comparative yield stress determination for pure and interstratified smectite clays

Different experimental devices and operative procedures were used to obtain the main properties of suspensions of two purified clays, a pure smectite and an interstratified illite-smectite natural clay, at different concentrations. The yield stress values derived from flow and creep tests were found...

Full description

Saved in:
Bibliographic Details
Published in:Rheologica acta 2005, Vol.44 (3), p.262-269
Main Authors: LARIBI, Saoussen, FLEUREAU, Jean-Marie, GROSSIORD, Jean-Louis, KBIR-ARIGUIB, Nejia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Different experimental devices and operative procedures were used to obtain the main properties of suspensions of two purified clays, a pure smectite and an interstratified illite-smectite natural clay, at different concentrations. The yield stress values derived from flow and creep tests were found to be very consistent, while those derived from dynamic tests were observed to be much more sensitive to experimental conditions. Qualitatively, the two clays exhibit the same rheological behaviour, which can be modelled using the Herschel-Bulkley model; their yield stress increases with clay concentration and they present a thixotropic character for low concentrations, with an inversion of the curves when the clay concentration increases. However, significant differences were observed when considering numerical values. For the same clay concentration in the suspension, the yield stress of the pure smectite is distinctly higher than that of the interstratified one. The rheological properties of the pure smectite clay can be related to the swelling properties and the organisation of the minerals in water, leading to three-dimensional strong but deformable structures. On the other hand, the presence of a small percentage of illite in the natural clay gives it a brittle behaviour which collapses more easily under stress.
ISSN:0035-4511
1435-1528
DOI:10.1007/s00397-004-0406-3