Loading…
Radiation Abolishes Inducer Binding to Lactose Repressor
Gillard, N., Spotheim-Maurizot, M. and Charlier, M. Radiation Abolishes Inducer Binding to Lactose Repressor. Radiat. Res. 163, 433–446 (2005). The lactose operon functions under the control of the repressor-operator system. Binding of the repressor to the operator prevents the expression of the str...
Saved in:
Published in: | Radiation research 2005-04, Vol.163 (4), p.433-446 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gillard, N., Spotheim-Maurizot, M. and Charlier, M. Radiation Abolishes Inducer Binding to Lactose Repressor. Radiat. Res. 163, 433–446 (2005). The lactose operon functions under the control of the repressor-operator system. Binding of the repressor to the operator prevents the expression of the structural genes. This interaction can be destroyed by the binding of an inducer to the repressor. If ionizing radiations damage the partners, a dramatic dysfunction of the regulation system may be expected. We showed previously that γ irradiation hinders repressor-operator binding through protein damage. Here we show that irradiation of the repressor abolishes the binding of the gratuitous inducer isopropyl-1-β-d-thiogalactoside (IPTG) to the repressor. The observed lack of release of the repressor from the complex results from the loss of the ability of the inducer to bind to the repressor due to the destruction of the IPTG binding site. Fluorescence measurements show that both tryptophan residues located in or near the IPTG binding site are damaged. Since tryptophan damage is strongly correlated with the loss of IPTG binding ability, we conclude that it plays a critical role in the effect. A model was built that takes into account the kinetic analysis of damage production and the observed protection of its binding site by IPTG. This model satisfactorily accounts for the experimental results and allows us to understand the radiation-induced effects. |
---|---|
ISSN: | 0033-7587 1938-5404 |
DOI: | 10.1667/RR3336 |