Loading…
First-Order Phase Transition in Potts Models with Finite-Range Interactions
We consider the $Q$-state Potts model on $\mathbb Z^d$, $Q\ge 3$, $d\ge 2$, with Kac ferromagnetic interactions and scaling parameter $\ga$. We prove the existence of a first order phase transition for large but finite potential ranges. More precisely we prove that for $\ga$ small enough there is a...
Saved in:
Published in: | Journal of statistical physics 2007-02, Vol.126 (3), p.507-583 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the $Q$-state Potts model on $\mathbb Z^d$, $Q\ge 3$, $d\ge 2$, with Kac ferromagnetic interactions and scaling parameter $\ga$. We prove the existence of a first order phase transition for large but finite potential ranges. More precisely we prove that for $\ga$ small enough there is a value of the temperature at which coexist $Q+1$ Gibbs states. The proof is obtained by a perturbation around mean-field using Pirogov-Sinai theory. The result is valid in particular for $d=2$, $Q=3$, in contrast with the case of nearest-neighbor interactions for which available results indicate a second order phase transition. Putting both results together provides an example of a system which undergoes a transition from second to first order phase transition by changing only the finite range of the interaction. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-006-9230-8 |