Loading…
Forgetting the initial distribution for Hidden Markov Models
The forgetting of the initial distribution for discrete Hidden Markov Models (HMM) is addressed: a new set of conditions is proposed, to establish the forgetting property of the filter, at a polynomial and geometric rate. Both a pathwise-type convergence of the total variation distance of the filter...
Saved in:
Published in: | Stochastic processes and their applications 2009-04, Vol.119 (4), p.1235-1256 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The forgetting of the initial distribution for discrete Hidden Markov Models (HMM) is addressed: a new set of conditions is proposed, to establish the forgetting property of the filter, at a polynomial and geometric rate. Both a pathwise-type convergence of the total variation distance of the filter started from two different initial distributions, and a convergence in expectation are considered. The results are illustrated using different HMM of interest: the dynamic tobit model, the nonlinear state space model and the stochastic volatility model. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/j.spa.2008.05.007 |