Loading…
Mixed languages
Let T = A ∪ B ∪ C be an alphabet that is partitioned into three subalphabets. The mixing product of a word g over A ∪ B and of a word d over A ∪ C is the set of words w over T such that its projection onto A ∪ B gives g and its projection onto A ∪ C gives d. Let R be a regular language over T such t...
Saved in:
Published in: | Theoretical computer science 2005-02, Vol.332 (1), p.179-198 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
T
=
A
∪
B
∪
C
be an alphabet that is partitioned into three subalphabets. The
mixing product of a word
g over
A
∪
B
and of a word
d over
A
∪
C
is the set of words
w
over
T such that its projection onto
A
∪
B
gives
g and its projection onto
A
∪
C
gives
d.
Let
R be a regular language over
T such that
xbcy is in
R if and only if
xcby is in
R for any two letters
b in
B and
c in
C. In other words,
R is commutative over
B and
C. Is this property “structural” in the sense that
R can then be obtained as a mixing product of a regular language over
A
∪
B
and of a regular language over
A
∪
C
?
This question has a rather easy answer, but there are many cases where the answer is negative. A more interesting question is whether
R can be represented as a finite union of mixed products of regular languages. For the moment, we do not have an answer to this question. However, we prove that it is decidable whether, for a given
k, the language
R is a union of at most
k mixed products of regular languages.
Soit
T
=
A
∪
B
∪
C
un alphabet partitionné en trois sous-alphabets. Le
mélange d’un mot
g sur
A
∪
B
et d’un mot
d sur
A
∪
C
est l’ensemble des mots
w
sur
T dont la projection sur
A
∪
B
donne le mot
g et sur
A
∪
C
donne le mot
d.
Soit
R un langage rationnel sur
T tel que
xbcy est dans
R si et seulement si
xcby est dans
R pour deux lettres quelconques
b
∈
B
et
c
∈
C
. En d’autres termes,
R est commutatif sur
B et
C. Est-ce que cette propriété est “structurelle”, c’est-à-dire peut-on alors obtenir
R comme mélange d’un langage rationnel sur
A
∪
B
et d’un langage rationnel sur
A
∪
C
?
Cette question a une réponse plutôt facile, mais il existe de trop nombreux cas où la réponse est négative. Une question plus intéressante est de savoir si on peut représenter
R comme une union finie de mélanges de langages rationnels. Pour l’instant, nous n’avons pas de réponse à cette question. En revanche, nous montrons qu’il est décidable, pour un entier
k donné, si
R est union d’au plus
k mélanges de langages rationnels. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2004.08.016 |