Loading…
Machine-independent characterizations and complete problems for deterministic linear time
This article presents two algebraic characterizations and two related complete problems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell., 16 (1996), pp. 183--236]. DLIN is essentially the class of all functions that can be computed in linear time on a Ran...
Saved in:
Published in: | SIAM journal on computing 2002-01, Vol.32 (1), p.196-230 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents two algebraic characterizations and two related complete problems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell., 16 (1996), pp. 183--236]. DLIN is essentially the class of all functions that can be computed in linear time on a Random Access Machine which uses only numbers of linear value during its computations. The algebraic characterizations are in terms of recursion schemes that define unary functions. One of these schemes defines several functions simultaneously, while the other one defines only one function. From the algebraic characterizations, we derive two complete problems for DLIN under new, very strict, and machine-independent affine reductions. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/S0097539799360240 |