Loading…

Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics

The average secular cooling rate of the Earth can be deduced from compositional variations of mantle melts through time and from rheological conditions at the onset of sub-solidus convection at the end of the initial magma ocean phase. The constraint that this places on the characteristics of mantle...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2007-08, Vol.260 (3), p.465-481
Main Authors: Labrosse, S., Jaupart, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The average secular cooling rate of the Earth can be deduced from compositional variations of mantle melts through time and from rheological conditions at the onset of sub-solidus convection at the end of the initial magma ocean phase. The constraint that this places on the characteristics of mantle convection in the past are investigated using the global heat balance equation and a simple parameterization for the heat loss of the Earth. All heat loss parameterization schemes depend on a closure equation for the maximum age of oceanic plates. We use a scheme that accounts for the present-day distribution of heat flux at Earth's surface and that does not depend on any assumption about the dynamics of convection with rigid plates, which remain poorly understood. We show that heat supply to the base of continents and transient continental thermal regimes cannot be ignored. We find that the maximum sea floor age has not changed by large amounts over the last 3 Ga. Calculations lead to a maximum temperature at an age of about 3 Ga and cannot be extrapolated further back in time. By construction, these calculations are based on the present-day tectonic regime characterized by the subduction of large oceanic plates and hence indicate that this regime did not prevail until an age of about 3 Ga. According to this interpretation, the onset of rapid continental growth occurred when the current plate regime became stable.
ISSN:0012-821X
1385-013X
DOI:10.1016/j.epsl.2007.05.046