Loading…
Bridging dielectric fluids by light: A ray optics approach
Rayleigh-Plateau instability is known to impose a stability limit for the length of a liquid bridge in weightless conditions. This fundamental limit may be exceeded by using a light field to form and stabilize dielectric fluid bridges (A. Casner, J.P. Delville, Europhys. Lett. 65 , 337 (2004)). Usin...
Saved in:
Published in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2008-08, Vol.26 (4), p.405-409, Article 405 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rayleigh-Plateau instability is known to impose a stability limit for the length of a liquid bridge in weightless conditions. This fundamental limit may be exceeded by using a light field to form and stabilize dielectric fluid bridges (A. Casner, J.P. Delville, Europhys. Lett.
65
, 337 (2004)). Using both new experimental data as well as a new theoretical approach, we show that both the size and the stability of such light-sustained dielectric bridge can be qualitatively explained. We present a ray optics model that encompasses the competition between surface tension effects and optical radiation pressure arising from total internal reflection inside the bridge. A critical power below which a liquid bridge can no longer be sustained by light is predicted and confirmed experimentally. The observed power dependence of the bridge diameter also agrees with the proposed stabilization mechanism. |
---|---|
ISSN: | 1292-8941 1292-895X |
DOI: | 10.1140/epje/i2008-10336-1 |