Loading…

Supervised enzyme network inference from the integration of genomic data and chemical information

Motivation: The metabolic network is an important biological network which relates enzyme proteins and chemical compounds. A large number of metabolic pathways remain unknown nowadays, and many enzymes are missing even in known metabolic pathways. There is, therefore, an incentive to develop methods...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2005-06, Vol.21 (suppl-1), p.i468-i477
Main Authors: Yamanishi, Yoshihiro, Vert, Jean-Philippe, Kanehisa, Minoru
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivation: The metabolic network is an important biological network which relates enzyme proteins and chemical compounds. A large number of metabolic pathways remain unknown nowadays, and many enzymes are missing even in known metabolic pathways. There is, therefore, an incentive to develop methods to reconstruct the unknown parts of the metabolic network and to identify genes coding for missing enzymes. Results: This paper presents new methods to infer enzyme networks from the integration of multiple genomic data and chemical information, in the framework of supervised graph inference. The originality of the methods is the introduction of chemical compatibility as a constraint for refining the network predicted by the network inference engine. The chemical compatibility between two enzymes is obtained automatically from the information encoded by their Enzyme Commission (EC) numbers. The proposed methods are tested and compared on their ability to infer the enzyme network of the yeast Saccharomyces cerevisiae from four datasets for enzymes with assigned EC numbers: gene expression data, protein localization data, phylogenetic profiles and chemical compatibility information. It is shown that the prediction accuracy of the network reconstruction consistently improves owing to the introduction of chemical constraints, the use of a supervised approach and the weighted integration of multiple datasets. Finally, we conduct a comprehensive prediction of a global enzyme network consisting of all enzyme candidate proteins of the yeast to obtain new biological findings. Availability: Softwares are available upon request. Contact: yoshi@kuicr.kyoto-u.ac.jp
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bti1012