Loading…

Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli

It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when ex...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology 2010-03, Vol.222 (3), p.648-657
Main Authors: Chiche, Johanna, Rouleau, Matthieu, Gounon, Pierre, Brahimi-Horn, M. Christiane, Pouysségur, Jacques, Mazure, Nathalie M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03
cites cdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03
container_end_page 657
container_issue 3
container_start_page 648
container_title Journal of cellular physiology
container_volume 222
creator Chiche, Johanna
Rouleau, Matthieu
Gounon, Pierre
Brahimi-Horn, M. Christiane
Pouysségur, Jacques
Mazure, Nathalie M.
description It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jcp.21984
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00497195v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733607818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</originalsourceid><addsrcrecordid>eNp1kF1P2zAUhi3EBIXtgj-Acod2ETiOk9i-RNXagroPaUyTdmM5zgkYkjrY6db-e1xaytWuLNnP-_icl5AzCpcUILt6NP1lRqXID8iIguRpXhbZIRnFN5rKIqfH5CSERwCQkrEjckylLDgDNiI3s3XvVtYkuGi1v8c66ezgzINb1N7qpPduQDMkRi8M-sRg24ak8a5LdO_6wQ0xGQbbLVv7kXxodBvw0-48Jb8mX-7Gs3T-fXozvp6nJpc8T5FCRQXLG6ppJUotGM-xNsgLFI2pCgNl1aDAqgZgXJQCmioTZcZ1oUEbYKfk89b7oFvVe9tpv1ZOWzW7nqvNHUD8iMriL43sxZaNezwvMQyqs2GzhF6gWwbFGSuBizjP3mq8C8Fjs1dTUJuSVSxZvZYc2fOddVl1WL-Tu1YjcLUF_tkW1_83qdvxjzdluk3YMOBqn9D-SZWc8UL9_jZV45-TO5j8maqv7AUO1ZVP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733607818</pqid></control><display><type>article</type><title>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</title><source>Wiley</source><creator>Chiche, Johanna ; Rouleau, Matthieu ; Gounon, Pierre ; Brahimi-Horn, M. Christiane ; Pouysségur, Jacques ; Mazure, Nathalie M.</creator><creatorcontrib>Chiche, Johanna ; Rouleau, Matthieu ; Gounon, Pierre ; Brahimi-Horn, M. Christiane ; Pouysségur, Jacques ; Mazure, Nathalie M.</creatorcontrib><description>It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.21984</identifier><identifier>PMID: 19957303</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenosine Triphosphate ; Adenosine Triphosphate - metabolism ; Antineoplastic Agents, Phytogenic ; Antineoplastic Agents, Phytogenic - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Cell Hypoxia ; Cell Proliferation ; Cell Proliferation - drug effects ; Development Biology ; Drug Resistance, Neoplasm ; Etoposide ; Etoposide - pharmacology ; GTP Phosphohydrolases ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; HeLa Cells ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Life Sciences ; Membrane Potential, Mitochondrial ; Membrane Potential, Mitochondrial - drug effects ; Membrane Proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membrane Transport Proteins ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Membrane Transport Proteins ; Mitochondrial Proteins ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitochondrial Swelling ; Neoplasms ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Phenotype ; Proto-Oncogene Proteins ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; RNA Interference ; Staurosporine ; Staurosporine - pharmacology ; Time Factors ; Transfection ; Tumor Suppressor Proteins ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Journal of cellular physiology, 2010-03, Vol.222 (3), p.648-657</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</citedby><cites>FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</cites><orcidid>0000-0003-1350-7161 ; 0000-0002-0075-9880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19957303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00497195$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiche, Johanna</creatorcontrib><creatorcontrib>Rouleau, Matthieu</creatorcontrib><creatorcontrib>Gounon, Pierre</creatorcontrib><creatorcontrib>Brahimi-Horn, M. Christiane</creatorcontrib><creatorcontrib>Pouysségur, Jacques</creatorcontrib><creatorcontrib>Mazure, Nathalie M.</creatorcontrib><title>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.</description><subject>Adenosine Triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Antineoplastic Agents, Phytogenic</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cell Hypoxia</subject><subject>Cell Proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Development Biology</subject><subject>Drug Resistance, Neoplasm</subject><subject>Etoposide</subject><subject>Etoposide - pharmacology</subject><subject>GTP Phosphohydrolases</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Transport Proteins</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Membrane Transport Proteins</subject><subject>Mitochondrial Proteins</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial Swelling</subject><subject>Neoplasms</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Phenotype</subject><subject>Proto-Oncogene Proteins</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>RNA Interference</subject><subject>Staurosporine</subject><subject>Staurosporine - pharmacology</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Tumor Suppressor Proteins</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kF1P2zAUhi3EBIXtgj-Acod2ETiOk9i-RNXagroPaUyTdmM5zgkYkjrY6db-e1xaytWuLNnP-_icl5AzCpcUILt6NP1lRqXID8iIguRpXhbZIRnFN5rKIqfH5CSERwCQkrEjckylLDgDNiI3s3XvVtYkuGi1v8c66ezgzINb1N7qpPduQDMkRi8M-sRg24ak8a5LdO_6wQ0xGQbbLVv7kXxodBvw0-48Jb8mX-7Gs3T-fXozvp6nJpc8T5FCRQXLG6ppJUotGM-xNsgLFI2pCgNl1aDAqgZgXJQCmioTZcZ1oUEbYKfk89b7oFvVe9tpv1ZOWzW7nqvNHUD8iMriL43sxZaNezwvMQyqs2GzhF6gWwbFGSuBizjP3mq8C8Fjs1dTUJuSVSxZvZYc2fOddVl1WL-Tu1YjcLUF_tkW1_83qdvxjzdluk3YMOBqn9D-SZWc8UL9_jZV45-TO5j8maqv7AUO1ZVP</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Chiche, Johanna</creator><creator>Rouleau, Matthieu</creator><creator>Gounon, Pierre</creator><creator>Brahimi-Horn, M. Christiane</creator><creator>Pouysségur, Jacques</creator><creator>Mazure, Nathalie M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1350-7161</orcidid><orcidid>https://orcid.org/0000-0002-0075-9880</orcidid></search><sort><creationdate>201003</creationdate><title>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</title><author>Chiche, Johanna ; Rouleau, Matthieu ; Gounon, Pierre ; Brahimi-Horn, M. Christiane ; Pouysségur, Jacques ; Mazure, Nathalie M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine Triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Antineoplastic Agents, Phytogenic</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cell Hypoxia</topic><topic>Cell Proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Development Biology</topic><topic>Drug Resistance, Neoplasm</topic><topic>Etoposide</topic><topic>Etoposide - pharmacology</topic><topic>GTP Phosphohydrolases</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Transport Proteins</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Membrane Transport Proteins</topic><topic>Mitochondrial Proteins</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial Swelling</topic><topic>Neoplasms</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Phenotype</topic><topic>Proto-Oncogene Proteins</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>RNA Interference</topic><topic>Staurosporine</topic><topic>Staurosporine - pharmacology</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Tumor Suppressor Proteins</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiche, Johanna</creatorcontrib><creatorcontrib>Rouleau, Matthieu</creatorcontrib><creatorcontrib>Gounon, Pierre</creatorcontrib><creatorcontrib>Brahimi-Horn, M. Christiane</creatorcontrib><creatorcontrib>Pouysségur, Jacques</creatorcontrib><creatorcontrib>Mazure, Nathalie M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiche, Johanna</au><au>Rouleau, Matthieu</au><au>Gounon, Pierre</au><au>Brahimi-Horn, M. Christiane</au><au>Pouysségur, Jacques</au><au>Mazure, Nathalie M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2010-03</date><risdate>2010</risdate><volume>222</volume><issue>3</issue><spage>648</spage><epage>657</epage><pages>648-657</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19957303</pmid><doi>10.1002/jcp.21984</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1350-7161</orcidid><orcidid>https://orcid.org/0000-0002-0075-9880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2010-03, Vol.222 (3), p.648-657
issn 0021-9541
1097-4652
language eng
recordid cdi_hal_primary_oai_HAL_hal_00497195v1
source Wiley
subjects Adenosine Triphosphate
Adenosine Triphosphate - metabolism
Antineoplastic Agents, Phytogenic
Antineoplastic Agents, Phytogenic - pharmacology
Apoptosis
Apoptosis - drug effects
Cell Hypoxia
Cell Proliferation
Cell Proliferation - drug effects
Development Biology
Drug Resistance, Neoplasm
Etoposide
Etoposide - pharmacology
GTP Phosphohydrolases
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
HeLa Cells
Humans
Hypoxia-Inducible Factor 1, alpha Subunit
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Life Sciences
Membrane Potential, Mitochondrial
Membrane Potential, Mitochondrial - drug effects
Membrane Proteins
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membrane Transport Proteins
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Mitochondria
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Membrane Transport Proteins
Mitochondrial Proteins
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mitochondrial Swelling
Neoplasms
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Phenotype
Proto-Oncogene Proteins
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
RNA Interference
Staurosporine
Staurosporine - pharmacology
Time Factors
Transfection
Tumor Suppressor Proteins
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
title Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxic%20enlarged%20mitochondria%20protect%20cancer%20cells%20from%20apoptotic%20stimuli&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Chiche,%20Johanna&rft.date=2010-03&rft.volume=222&rft.issue=3&rft.spage=648&rft.epage=657&rft.pages=648-657&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.21984&rft_dat=%3Cproquest_hal_p%3E733607818%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733607818&rft_id=info:pmid/19957303&rfr_iscdi=true