Loading…
Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli
It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when ex...
Saved in:
Published in: | Journal of cellular physiology 2010-03, Vol.222 (3), p.648-657 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03 |
---|---|
cites | cdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03 |
container_end_page | 657 |
container_issue | 3 |
container_start_page | 648 |
container_title | Journal of cellular physiology |
container_volume | 222 |
creator | Chiche, Johanna Rouleau, Matthieu Gounon, Pierre Brahimi-Horn, M. Christiane Pouysségur, Jacques Mazure, Nathalie M. |
description | It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jcp.21984 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00497195v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733607818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</originalsourceid><addsrcrecordid>eNp1kF1P2zAUhi3EBIXtgj-Acod2ETiOk9i-RNXagroPaUyTdmM5zgkYkjrY6db-e1xaytWuLNnP-_icl5AzCpcUILt6NP1lRqXID8iIguRpXhbZIRnFN5rKIqfH5CSERwCQkrEjckylLDgDNiI3s3XvVtYkuGi1v8c66ezgzINb1N7qpPduQDMkRi8M-sRg24ak8a5LdO_6wQ0xGQbbLVv7kXxodBvw0-48Jb8mX-7Gs3T-fXozvp6nJpc8T5FCRQXLG6ppJUotGM-xNsgLFI2pCgNl1aDAqgZgXJQCmioTZcZ1oUEbYKfk89b7oFvVe9tpv1ZOWzW7nqvNHUD8iMriL43sxZaNezwvMQyqs2GzhF6gWwbFGSuBizjP3mq8C8Fjs1dTUJuSVSxZvZYc2fOddVl1WL-Tu1YjcLUF_tkW1_83qdvxjzdluk3YMOBqn9D-SZWc8UL9_jZV45-TO5j8maqv7AUO1ZVP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733607818</pqid></control><display><type>article</type><title>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</title><source>Wiley</source><creator>Chiche, Johanna ; Rouleau, Matthieu ; Gounon, Pierre ; Brahimi-Horn, M. Christiane ; Pouysségur, Jacques ; Mazure, Nathalie M.</creator><creatorcontrib>Chiche, Johanna ; Rouleau, Matthieu ; Gounon, Pierre ; Brahimi-Horn, M. Christiane ; Pouysségur, Jacques ; Mazure, Nathalie M.</creatorcontrib><description>It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.21984</identifier><identifier>PMID: 19957303</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenosine Triphosphate ; Adenosine Triphosphate - metabolism ; Antineoplastic Agents, Phytogenic ; Antineoplastic Agents, Phytogenic - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Cell Hypoxia ; Cell Proliferation ; Cell Proliferation - drug effects ; Development Biology ; Drug Resistance, Neoplasm ; Etoposide ; Etoposide - pharmacology ; GTP Phosphohydrolases ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; HeLa Cells ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Life Sciences ; Membrane Potential, Mitochondrial ; Membrane Potential, Mitochondrial - drug effects ; Membrane Proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membrane Transport Proteins ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Membrane Transport Proteins ; Mitochondrial Proteins ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitochondrial Swelling ; Neoplasms ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Phenotype ; Proto-Oncogene Proteins ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; RNA Interference ; Staurosporine ; Staurosporine - pharmacology ; Time Factors ; Transfection ; Tumor Suppressor Proteins ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Journal of cellular physiology, 2010-03, Vol.222 (3), p.648-657</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</citedby><cites>FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</cites><orcidid>0000-0003-1350-7161 ; 0000-0002-0075-9880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19957303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00497195$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiche, Johanna</creatorcontrib><creatorcontrib>Rouleau, Matthieu</creatorcontrib><creatorcontrib>Gounon, Pierre</creatorcontrib><creatorcontrib>Brahimi-Horn, M. Christiane</creatorcontrib><creatorcontrib>Pouysségur, Jacques</creatorcontrib><creatorcontrib>Mazure, Nathalie M.</creatorcontrib><title>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.</description><subject>Adenosine Triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Antineoplastic Agents, Phytogenic</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cell Hypoxia</subject><subject>Cell Proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Development Biology</subject><subject>Drug Resistance, Neoplasm</subject><subject>Etoposide</subject><subject>Etoposide - pharmacology</subject><subject>GTP Phosphohydrolases</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Transport Proteins</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Membrane Transport Proteins</subject><subject>Mitochondrial Proteins</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial Swelling</subject><subject>Neoplasms</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Phenotype</subject><subject>Proto-Oncogene Proteins</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>RNA Interference</subject><subject>Staurosporine</subject><subject>Staurosporine - pharmacology</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Tumor Suppressor Proteins</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kF1P2zAUhi3EBIXtgj-Acod2ETiOk9i-RNXagroPaUyTdmM5zgkYkjrY6db-e1xaytWuLNnP-_icl5AzCpcUILt6NP1lRqXID8iIguRpXhbZIRnFN5rKIqfH5CSERwCQkrEjckylLDgDNiI3s3XvVtYkuGi1v8c66ezgzINb1N7qpPduQDMkRi8M-sRg24ak8a5LdO_6wQ0xGQbbLVv7kXxodBvw0-48Jb8mX-7Gs3T-fXozvp6nJpc8T5FCRQXLG6ppJUotGM-xNsgLFI2pCgNl1aDAqgZgXJQCmioTZcZ1oUEbYKfk89b7oFvVe9tpv1ZOWzW7nqvNHUD8iMriL43sxZaNezwvMQyqs2GzhF6gWwbFGSuBizjP3mq8C8Fjs1dTUJuSVSxZvZYc2fOddVl1WL-Tu1YjcLUF_tkW1_83qdvxjzdluk3YMOBqn9D-SZWc8UL9_jZV45-TO5j8maqv7AUO1ZVP</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Chiche, Johanna</creator><creator>Rouleau, Matthieu</creator><creator>Gounon, Pierre</creator><creator>Brahimi-Horn, M. Christiane</creator><creator>Pouysségur, Jacques</creator><creator>Mazure, Nathalie M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1350-7161</orcidid><orcidid>https://orcid.org/0000-0002-0075-9880</orcidid></search><sort><creationdate>201003</creationdate><title>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</title><author>Chiche, Johanna ; Rouleau, Matthieu ; Gounon, Pierre ; Brahimi-Horn, M. Christiane ; Pouysségur, Jacques ; Mazure, Nathalie M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine Triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Antineoplastic Agents, Phytogenic</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cell Hypoxia</topic><topic>Cell Proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Development Biology</topic><topic>Drug Resistance, Neoplasm</topic><topic>Etoposide</topic><topic>Etoposide - pharmacology</topic><topic>GTP Phosphohydrolases</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Transport Proteins</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Membrane Transport Proteins</topic><topic>Mitochondrial Proteins</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial Swelling</topic><topic>Neoplasms</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Phenotype</topic><topic>Proto-Oncogene Proteins</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>RNA Interference</topic><topic>Staurosporine</topic><topic>Staurosporine - pharmacology</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Tumor Suppressor Proteins</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiche, Johanna</creatorcontrib><creatorcontrib>Rouleau, Matthieu</creatorcontrib><creatorcontrib>Gounon, Pierre</creatorcontrib><creatorcontrib>Brahimi-Horn, M. Christiane</creatorcontrib><creatorcontrib>Pouysségur, Jacques</creatorcontrib><creatorcontrib>Mazure, Nathalie M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiche, Johanna</au><au>Rouleau, Matthieu</au><au>Gounon, Pierre</au><au>Brahimi-Horn, M. Christiane</au><au>Pouysségur, Jacques</au><au>Mazure, Nathalie M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2010-03</date><risdate>2010</risdate><volume>222</volume><issue>3</issue><spage>648</spage><epage>657</epage><pages>648-657</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19957303</pmid><doi>10.1002/jcp.21984</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1350-7161</orcidid><orcidid>https://orcid.org/0000-0002-0075-9880</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2010-03, Vol.222 (3), p.648-657 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00497195v1 |
source | Wiley |
subjects | Adenosine Triphosphate Adenosine Triphosphate - metabolism Antineoplastic Agents, Phytogenic Antineoplastic Agents, Phytogenic - pharmacology Apoptosis Apoptosis - drug effects Cell Hypoxia Cell Proliferation Cell Proliferation - drug effects Development Biology Drug Resistance, Neoplasm Etoposide Etoposide - pharmacology GTP Phosphohydrolases GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism HeLa Cells Humans Hypoxia-Inducible Factor 1, alpha Subunit Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Life Sciences Membrane Potential, Mitochondrial Membrane Potential, Mitochondrial - drug effects Membrane Proteins Membrane Proteins - genetics Membrane Proteins - metabolism Membrane Transport Proteins Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Mitochondria Mitochondria - metabolism Mitochondria - pathology Mitochondrial Membrane Transport Proteins Mitochondrial Proteins Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Mitochondrial Swelling Neoplasms Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Phenotype Proto-Oncogene Proteins Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism RNA Interference Staurosporine Staurosporine - pharmacology Time Factors Transfection Tumor Suppressor Proteins Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
title | Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxic%20enlarged%20mitochondria%20protect%20cancer%20cells%20from%20apoptotic%20stimuli&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Chiche,%20Johanna&rft.date=2010-03&rft.volume=222&rft.issue=3&rft.spage=648&rft.epage=657&rft.pages=648-657&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.21984&rft_dat=%3Cproquest_hal_p%3E733607818%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4974-e10b1834f1a1b86a8374edce75e8fcb5c06bfe8ebd00378680fb28627a5a0ac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733607818&rft_id=info:pmid/19957303&rfr_iscdi=true |