Loading…

Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments

Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that th...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2010-01, Vol.1804 (1), p.56-62
Main Authors: Kneller, G.R., Calandrini, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.
ISSN:1570-9639
0006-3002
1878-1454
DOI:10.1016/j.bbapap.2009.05.007