Loading…

Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments

Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that th...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2010-01, Vol.1804 (1), p.56-62
Main Authors: Kneller, G.R., Calandrini, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643
cites cdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643
container_end_page 62
container_issue 1
container_start_page 56
container_title Biochimica et biophysica acta
container_volume 1804
creator Kneller, G.R.
Calandrini, V.
description Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.
doi_str_mv 10.1016/j.bbapap.2009.05.007
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00529350v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963909001423</els_id><sourcerecordid>733674879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</originalsourceid><addsrcrecordid>eNp9Uctq3DAUFaWhSZP-QSnelSzsXlmSZW0CYWiawkAWSdZClq6JBr8i2aGz60fkC_sl0eCh3XUlofPSvYeQzxQKCrT6tiuaxkxmKkoAVYAoAOQ7ckZrWeeUC_4-3YWEXFVMnZKPMe4ASpBSfCCnVAkOrFJnxN5j1-bR974zIXP7wfTexmxssymMM_ohZsvgMGRPexfGOJvZ2wRhjEvAP79fN2M_LXPCk8XSJXRMCjO4DH9NGHyPwxwvyElruoifjuc5ebz5_rC5zbd3P35urre55RWdc8m5oQ5ZI6kwKJSVUDl6-DLUTLZMlbaty7oBK6Qy0ApmLJVWgWOMY8XZOblcfZ9Mp6cUbsJej8br2-utPrwBiFIxAS80cb-u3DTm84Jx1r2PFrvODDguUUvGKslrqRKTr0yb5o8B27_WFPShCb3TaxP60IQGkXJkkn05BixNj-6f6Lj6RLhaCZhW8uIx6Gg9DhadD2hn7Ub__4Q3DPKdYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733674879</pqid></control><display><type>article</type><title>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kneller, G.R. ; Calandrini, V.</creator><creatorcontrib>Kneller, G.R. ; Calandrini, V.</creatorcontrib><description>Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.</description><identifier>ISSN: 1570-9639</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2009.05.007</identifier><identifier>PMID: 19540369</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Computer Simulation ; Diffusion ; Fractional Brownian dynamics ; Hydrostatic Pressure ; Models, Chemical ; Molecular Dynamics Simulation ; Muramidase - chemistry ; Neutron Diffraction ; Protein dynamics ; Proteins - chemistry ; Quasielastic neutron scattering ; Slow relaxation ; Spectrometry, Fluorescence</subject><ispartof>Biochimica et biophysica acta, 2010-01, Vol.1804 (1), p.56-62</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</citedby><cites>FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</cites><orcidid>0000-0002-3374-3797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19540369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00529350$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kneller, G.R.</creatorcontrib><creatorcontrib>Calandrini, V.</creatorcontrib><title>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.</description><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Fractional Brownian dynamics</subject><subject>Hydrostatic Pressure</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Muramidase - chemistry</subject><subject>Neutron Diffraction</subject><subject>Protein dynamics</subject><subject>Proteins - chemistry</subject><subject>Quasielastic neutron scattering</subject><subject>Slow relaxation</subject><subject>Spectrometry, Fluorescence</subject><issn>1570-9639</issn><issn>0006-3002</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9Uctq3DAUFaWhSZP-QSnelSzsXlmSZW0CYWiawkAWSdZClq6JBr8i2aGz60fkC_sl0eCh3XUlofPSvYeQzxQKCrT6tiuaxkxmKkoAVYAoAOQ7ckZrWeeUC_4-3YWEXFVMnZKPMe4ASpBSfCCnVAkOrFJnxN5j1-bR974zIXP7wfTexmxssymMM_ohZsvgMGRPexfGOJvZ2wRhjEvAP79fN2M_LXPCk8XSJXRMCjO4DH9NGHyPwxwvyElruoifjuc5ebz5_rC5zbd3P35urre55RWdc8m5oQ5ZI6kwKJSVUDl6-DLUTLZMlbaty7oBK6Qy0ApmLJVWgWOMY8XZOblcfZ9Mp6cUbsJej8br2-utPrwBiFIxAS80cb-u3DTm84Jx1r2PFrvODDguUUvGKslrqRKTr0yb5o8B27_WFPShCb3TaxP60IQGkXJkkn05BixNj-6f6Lj6RLhaCZhW8uIx6Gg9DhadD2hn7Ub__4Q3DPKdYQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Kneller, G.R.</creator><creator>Calandrini, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3374-3797</orcidid></search><sort><creationdate>201001</creationdate><title>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</title><author>Kneller, G.R. ; Calandrini, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Fractional Brownian dynamics</topic><topic>Hydrostatic Pressure</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Muramidase - chemistry</topic><topic>Neutron Diffraction</topic><topic>Protein dynamics</topic><topic>Proteins - chemistry</topic><topic>Quasielastic neutron scattering</topic><topic>Slow relaxation</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kneller, G.R.</creatorcontrib><creatorcontrib>Calandrini, V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kneller, G.R.</au><au>Calandrini, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2010-01</date><risdate>2010</risdate><volume>1804</volume><issue>1</issue><spage>56</spage><epage>62</epage><pages>56-62</pages><issn>1570-9639</issn><issn>0006-3002</issn><eissn>1878-1454</eissn><abstract>Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19540369</pmid><doi>10.1016/j.bbapap.2009.05.007</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3374-3797</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-9639
ispartof Biochimica et biophysica acta, 2010-01, Vol.1804 (1), p.56-62
issn 1570-9639
0006-3002
1878-1454
language eng
recordid cdi_hal_primary_oai_HAL_hal_00529350v1
source ScienceDirect Freedom Collection 2022-2024
subjects Computer Simulation
Diffusion
Fractional Brownian dynamics
Hydrostatic Pressure
Models, Chemical
Molecular Dynamics Simulation
Muramidase - chemistry
Neutron Diffraction
Protein dynamics
Proteins - chemistry
Quasielastic neutron scattering
Slow relaxation
Spectrometry, Fluorescence
title Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-similar%20dynamics%20of%20proteins%20under%20hydrostatic%20pressure%E2%80%94Computer%20simulations%20and%20experiments&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Kneller,%20G.R.&rft.date=2010-01&rft.volume=1804&rft.issue=1&rft.spage=56&rft.epage=62&rft.pages=56-62&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2009.05.007&rft_dat=%3Cproquest_hal_p%3E733674879%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733674879&rft_id=info:pmid/19540369&rfr_iscdi=true