Loading…
Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments
Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that th...
Saved in:
Published in: | Biochimica et biophysica acta 2010-01, Vol.1804 (1), p.56-62 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643 |
container_end_page | 62 |
container_issue | 1 |
container_start_page | 56 |
container_title | Biochimica et biophysica acta |
container_volume | 1804 |
creator | Kneller, G.R. Calandrini, V. |
description | Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure. |
doi_str_mv | 10.1016/j.bbapap.2009.05.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00529350v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963909001423</els_id><sourcerecordid>733674879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</originalsourceid><addsrcrecordid>eNp9Uctq3DAUFaWhSZP-QSnelSzsXlmSZW0CYWiawkAWSdZClq6JBr8i2aGz60fkC_sl0eCh3XUlofPSvYeQzxQKCrT6tiuaxkxmKkoAVYAoAOQ7ckZrWeeUC_4-3YWEXFVMnZKPMe4ASpBSfCCnVAkOrFJnxN5j1-bR974zIXP7wfTexmxssymMM_ohZsvgMGRPexfGOJvZ2wRhjEvAP79fN2M_LXPCk8XSJXRMCjO4DH9NGHyPwxwvyElruoifjuc5ebz5_rC5zbd3P35urre55RWdc8m5oQ5ZI6kwKJSVUDl6-DLUTLZMlbaty7oBK6Qy0ApmLJVWgWOMY8XZOblcfZ9Mp6cUbsJej8br2-utPrwBiFIxAS80cb-u3DTm84Jx1r2PFrvODDguUUvGKslrqRKTr0yb5o8B27_WFPShCb3TaxP60IQGkXJkkn05BixNj-6f6Lj6RLhaCZhW8uIx6Gg9DhadD2hn7Ub__4Q3DPKdYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733674879</pqid></control><display><type>article</type><title>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kneller, G.R. ; Calandrini, V.</creator><creatorcontrib>Kneller, G.R. ; Calandrini, V.</creatorcontrib><description>Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.</description><identifier>ISSN: 1570-9639</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2009.05.007</identifier><identifier>PMID: 19540369</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Computer Simulation ; Diffusion ; Fractional Brownian dynamics ; Hydrostatic Pressure ; Models, Chemical ; Molecular Dynamics Simulation ; Muramidase - chemistry ; Neutron Diffraction ; Protein dynamics ; Proteins - chemistry ; Quasielastic neutron scattering ; Slow relaxation ; Spectrometry, Fluorescence</subject><ispartof>Biochimica et biophysica acta, 2010-01, Vol.1804 (1), p.56-62</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</citedby><cites>FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</cites><orcidid>0000-0002-3374-3797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19540369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00529350$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kneller, G.R.</creatorcontrib><creatorcontrib>Calandrini, V.</creatorcontrib><title>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.</description><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Fractional Brownian dynamics</subject><subject>Hydrostatic Pressure</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Muramidase - chemistry</subject><subject>Neutron Diffraction</subject><subject>Protein dynamics</subject><subject>Proteins - chemistry</subject><subject>Quasielastic neutron scattering</subject><subject>Slow relaxation</subject><subject>Spectrometry, Fluorescence</subject><issn>1570-9639</issn><issn>0006-3002</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9Uctq3DAUFaWhSZP-QSnelSzsXlmSZW0CYWiawkAWSdZClq6JBr8i2aGz60fkC_sl0eCh3XUlofPSvYeQzxQKCrT6tiuaxkxmKkoAVYAoAOQ7ckZrWeeUC_4-3YWEXFVMnZKPMe4ASpBSfCCnVAkOrFJnxN5j1-bR974zIXP7wfTexmxssymMM_ohZsvgMGRPexfGOJvZ2wRhjEvAP79fN2M_LXPCk8XSJXRMCjO4DH9NGHyPwxwvyElruoifjuc5ebz5_rC5zbd3P35urre55RWdc8m5oQ5ZI6kwKJSVUDl6-DLUTLZMlbaty7oBK6Qy0ApmLJVWgWOMY8XZOblcfZ9Mp6cUbsJej8br2-utPrwBiFIxAS80cb-u3DTm84Jx1r2PFrvODDguUUvGKslrqRKTr0yb5o8B27_WFPShCb3TaxP60IQGkXJkkn05BixNj-6f6Lj6RLhaCZhW8uIx6Gg9DhadD2hn7Ub__4Q3DPKdYQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Kneller, G.R.</creator><creator>Calandrini, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3374-3797</orcidid></search><sort><creationdate>201001</creationdate><title>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</title><author>Kneller, G.R. ; Calandrini, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Fractional Brownian dynamics</topic><topic>Hydrostatic Pressure</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Muramidase - chemistry</topic><topic>Neutron Diffraction</topic><topic>Protein dynamics</topic><topic>Proteins - chemistry</topic><topic>Quasielastic neutron scattering</topic><topic>Slow relaxation</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kneller, G.R.</creatorcontrib><creatorcontrib>Calandrini, V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kneller, G.R.</au><au>Calandrini, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2010-01</date><risdate>2010</risdate><volume>1804</volume><issue>1</issue><spage>56</spage><epage>62</epage><pages>56-62</pages><issn>1570-9639</issn><issn>0006-3002</issn><eissn>1878-1454</eissn><abstract>Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19540369</pmid><doi>10.1016/j.bbapap.2009.05.007</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3374-3797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-9639 |
ispartof | Biochimica et biophysica acta, 2010-01, Vol.1804 (1), p.56-62 |
issn | 1570-9639 0006-3002 1878-1454 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00529350v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computer Simulation Diffusion Fractional Brownian dynamics Hydrostatic Pressure Models, Chemical Molecular Dynamics Simulation Muramidase - chemistry Neutron Diffraction Protein dynamics Proteins - chemistry Quasielastic neutron scattering Slow relaxation Spectrometry, Fluorescence |
title | Self-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-similar%20dynamics%20of%20proteins%20under%20hydrostatic%20pressure%E2%80%94Computer%20simulations%20and%20experiments&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Kneller,%20G.R.&rft.date=2010-01&rft.volume=1804&rft.issue=1&rft.spage=56&rft.epage=62&rft.pages=56-62&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2009.05.007&rft_dat=%3Cproquest_hal_p%3E733674879%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-744a1de3b715ae59c706d120770837f392cf828b0c579a0f53ac17c90d334e643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733674879&rft_id=info:pmid/19540369&rfr_iscdi=true |