Loading…
Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique
Incomplete protein release from PLGA-based microspheres due to protein interactions with the polymer is one of the main issues in the development of PLGA protein-loaded microspheres. In this study, a two-dimensional adsorption model was designed to rapidly assess the anti-adsorption effect of formul...
Saved in:
Published in: | European journal of pharmaceutics and biopharmaceutics 2010-06, Vol.75 (2), p.128-136 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Incomplete protein release from PLGA-based microspheres due to protein interactions with the polymer is one of the main issues in the development of PLGA protein-loaded microspheres. In this study, a two-dimensional adsorption model was designed to rapidly assess the anti-adsorption effect of formulation components (additives, additives blended with the polymer or modified polymers). Lysozyme was chosen as a model protein because of its strong, non-specific adsorption on the PLGA surface. This study showed that PEGs, poloxamer 188 and BSA totally inhibited protein adsorption onto the PLGA37.5/25 layer. Similarly, it was emphasised that more hydrophilic polymers were less prone to protein adsorption. The correlation between this model and the
in vitro release profile was made by microencapsulating lysozyme with a low loading in the presence of these excipients by a non-denaturing s/o/w encapsulation technique. The precipitation of lysozyme with the amphiphilic poloxamer 188 prior to encapsulation exhibited continuous release of active lysozyme over 3
weeks without any burst effect. To promote lysozyme release in the latter stage of release, a PLGA–PEG–PLGA tribloc copolymer was used; lysozyme was continuously released over 45
days in a biologically active form. |
---|---|
ISSN: | 0939-6411 1873-3441 |
DOI: | 10.1016/j.ejpb.2010.03.005 |