Loading…

Temperature beneath continents as a function of continental cover and convective wavelength

Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large‐scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research. B. Solid Earth 2010-04, Vol.115 (B4), p.n/a
Main Authors: Phillips, Benjamin R., Coltice, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large‐scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of the mantle. Here we use spherical mantle convection models with continents to quantify variations in subcontinental temperature as a function of continent size and distribution and convective wavelength. Through comparison to a simple analytical boundary layer model, we show that larger continents beget warming of the underlying mantle, with heating sometimes compounded by the formation of broader convection cells associated with the biggest continents. Our results hold well for purely internally heated and partially core heated models with Rayleigh numbers of 105 to 107 containing continents with sizes ranging from that of Antarctica to Pangea. Results from a time‐dependent model with three mobile continents of various sizes suggests that the tendency for temperatures to rise with continent size persists on average over timescales of billions of years.
ISSN:0148-0227
2169-9313
2156-2202
2169-9356
DOI:10.1029/2009JB006600