Loading…
Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies
► Crack propagation at interfaces of thermal barrier coatings system is simulated. ► It is realized by the contact tool Debond in the ABAQUS code. ► Cracking depends on interface morphology and on thickness of the TGO layer. ► Stress distribution is different between the case with and without crack....
Saved in:
Published in: | Materials & Design 2011-12, Vol.32 (10), p.4961-4969 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ► Crack propagation at interfaces of thermal barrier coatings system is simulated. ► It is realized by the contact tool Debond in the ABAQUS code. ► Cracking depends on interface morphology and on thickness of the TGO layer. ► Stress distribution is different between the case with and without crack.
A finite element model (FEM) is developed to simulate the crack development in a typical plasma sprayed thermal barrier coatings system in consequence of the stresses induced by thermal cycling, the growth of the oxide layer and different interface morphologies. The thermo-mechanical model is designed to takes into account a non-homogenous temperature distribution and the effects of the residual stress generated during coating process.
Crack propagation at the top-coat/oxide and oxide/bond-coat interfaces is simulated thanks to the contact tool “
Debond” present in the ABAQUS finite element code. Simulations are performed with a geometry corresponding to identical or dissimilar amplitude of asperity and for different thickness of oxide layer.
The results show a significant difference between the case with and without presence of crack propagation and an important damage on the interfaces due to the growth of the oxide layer very close to the height of the interface asperities. |
---|---|
ISSN: | 0261-3069 0264-1275 |
DOI: | 10.1016/j.matdes.2011.05.039 |