Loading…
Nisin Quantification by ELISA Allows the Modeling of Its Apparent Diffusion Coefficient in Model Cheeses
The diffusion of small solutes in cheese is of key importance for most enzymatic reactions involved in the ripening process. However, only a limited amount of data is available on salt diffusion and practically none on peptide diffusion. Nisin, a bacteriocin peptide, migrated in model cheeses made f...
Saved in:
Published in: | Journal of agricultural and food chemistry 2011-09, Vol.59 (17), p.9484-9490 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The diffusion of small solutes in cheese is of key importance for most enzymatic reactions involved in the ripening process. However, only a limited amount of data is available on salt diffusion and practically none on peptide diffusion. Nisin, a bacteriocin peptide, migrated in model cheeses made from ultrafiltered (UF) retentate. A profile concentration device and an enzyme-linked immunosorbent assay (ELISA), specifically developed for nisin quantification in cheese, were used to model the apparent diffusion coefficients for nisin according to Fick’s law. This average coefficient was 49.5 μm2/s in UF cheese (n = 2). When 10% gelatin was added to the retentate, this value decreased to 34.4 μm2/s (n = 2). The two cheeses differed in their macrostructure (rheology) and microstructure (confocal microscopy). This study provides the first apparent diffusion coefficients for a peptide in cheese and supports the hypothesis that composition and structure influence the diffusion of small solutes such as peptides. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf2008474 |