Loading…

A progressive damage simulation algorithm for GFRP composites under cyclic loading. Part II: FE implementation and model validation

The FE implementation of FADAS, a material constitutive model capable of simulating the mechanical behaviour of GFRP composites under variable amplitude multiaxial cyclic loading, was presented. The discretization of the problem domain by means of FE is necessary for predicting the damage progressio...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2011-03, Vol.71 (5), p.750-757
Main Authors: Eliopoulos, Elias N., Philippidis, Theodore P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The FE implementation of FADAS, a material constitutive model capable of simulating the mechanical behaviour of GFRP composites under variable amplitude multiaxial cyclic loading, was presented. The discretization of the problem domain by means of FE is necessary for predicting the damage progression in real structures, as failure initiates at the vicinity of a stress concentrator, causing stress redistribution and the gradual spread of damage until the global failure of the structure. The implementation of the stiffness and strength degradation models in the principal material directions of the unidirectional ply was thoroughly discussed. Details were also presented on the FE models developed, the computational effort needed and the definition of final failure considered. Numerical predictions were corroborated satisfactorily by experimental data from constant amplitude uniaxial fatigue of multidirectional glass/epoxy laminates under various stress ratios. The validation of predictions included fatigue strength, stiffness degradation and residual static strength after cyclic loading.
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2011.01.025