Loading…
Multiple kernels noise for improved procedural texturing
Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary en...
Saved in:
Published in: | The Visual computer 2012-06, Vol.28 (6-8), p.679-689 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an
arbitrary
energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples. |
---|---|
ISSN: | 0178-2789 1432-2315 1432-8726 |
DOI: | 10.1007/s00371-012-0711-2 |