Loading…
Proof-Guided Test Selection from First-Order Specifications with Equality
This paper deals with test case selection from axiomatic specifications whose axioms are quantifier-free first-order formulas with equality. We first prove the existence of an ideal exhaustive test set to start the selection from. We then propose an extension of the test selection method called axio...
Saved in:
Published in: | Journal of automated reasoning 2010-12, Vol.45 (4), p.437-473 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with test case selection from axiomatic specifications whose axioms are quantifier-free first-order formulas with equality. We first prove the existence of an ideal exhaustive test set to start the selection from. We then propose an extension of the test selection method called axiom unfolding, originally defined for algebraic specifications, to quantifier-free first-order specifications with equality. This method basically consists of a case analysis of the property under test (the test purpose) according to the specification axioms. It is based on a proof search for the different instances of the test purpose. Since the calculus is sound and complete, this allows us to provide a full coverage of this property. The generalisation we propose allows to deal with any kind of predicate (not only equality) and with any form of axiom and test purpose (not only equations or Horn clauses). Moreover, it improves our previous works with efficiently dealing with the equality predicate, thanks to the paramodulation rule. |
---|---|
ISSN: | 0168-7433 1573-0670 |
DOI: | 10.1007/s10817-009-9128-7 |