Loading…

Proof-Guided Test Selection from First-Order Specifications with Equality

This paper deals with test case selection from axiomatic specifications whose axioms are quantifier-free first-order formulas with equality. We first prove the existence of an ideal exhaustive test set to start the selection from. We then propose an extension of the test selection method called axio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of automated reasoning 2010-12, Vol.45 (4), p.437-473
Main Authors: Longuet, Delphine, Aiguier, Marc, Le Gall, Pascale
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with test case selection from axiomatic specifications whose axioms are quantifier-free first-order formulas with equality. We first prove the existence of an ideal exhaustive test set to start the selection from. We then propose an extension of the test selection method called axiom unfolding, originally defined for algebraic specifications, to quantifier-free first-order specifications with equality. This method basically consists of a case analysis of the property under test (the test purpose) according to the specification axioms. It is based on a proof search for the different instances of the test purpose. Since the calculus is sound and complete, this allows us to provide a full coverage of this property. The generalisation we propose allows to deal with any kind of predicate (not only equality) and with any form of axiom and test purpose (not only equations or Horn clauses). Moreover, it improves our previous works with efficiently dealing with the equality predicate, thanks to the paramodulation rule.
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-009-9128-7