Loading…
Mould calculus, polyhedral cones, and characters of combinatorial Hopf algebras
We describe a method for constructing characters of combinatorial Hopf algebras by means of integrals over certain polyhedral cones. This is based on ideas from resurgence theory, in particular on the construction of well-behaved averages induced by diffusion processes on the real line. We give seve...
Saved in:
Published in: | Advances in applied mathematics 2013-07, Vol.51 (2), p.177-227 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe a method for constructing characters of combinatorial Hopf algebras by means of integrals over certain polyhedral cones. This is based on ideas from resurgence theory, in particular on the construction of well-behaved averages induced by diffusion processes on the real line. We give several interpretations and proofs of the main result in terms of noncommutative symmetric and quasi-symmetric functions, as well as generalizations involving matrix quasi-symmetric functions. The interpretation of noncommutative symmetric functions as alien operators in resurgence theory is also discussed, and a new family of Lie idempotents of descent algebras is derived from this interpretation. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1016/j.aam.2013.02.003 |