Loading…
On Irreducible Maps and Slices
We consider the problem of enumerating d-irreducible maps, i.e., planar maps all of whose cycles have length at least d, and such that any cycle of length d is the boundary of a face of degree d. We develop two approaches in parallel: the natural approach via substitution, where these maps are obtai...
Saved in:
Published in: | Combinatorics, probability & computing probability & computing, 2014-11, Vol.23 (6), p.914-972 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the problem of enumerating d-irreducible maps, i.e., planar maps all of whose cycles have length at least d, and such that any cycle of length d is the boundary of a face of degree d. We develop two approaches in parallel: the natural approach via substitution, where these maps are obtained from general maps by a replacement of all d-cycles by elementary faces, and a bijective approach via slice decomposition, which consists in cutting the maps along shortest paths. Both lead to explicit expressions for the generating functions of d-irreducible maps with controlled face degrees, summarized in some elegant ‘pointing formula’. We provide an equivalent description of d-irreducible slices in terms of so-called d-oriented trees. We finally show that irreducible maps give rise to a hierarchy of discrete integrable equations which include equations encountered previously in the context of naturally embedded trees. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548314000340 |