Loading…
Effect of the pH on the RAFT Polymerization of Acrylic Acid in Water. Application to the Synthesis of Poly(acrylic acid)-Stabilized Polystyrene Particles by RAFT Emulsion Polymerization
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylic acid (AA) in water was studied in detail at different pHs using 4-cyano-4-thiothiopropylsulfanyl pentanoic acid (CTPPA) as a control agent and 4,4′-azobis(4-cyanopentanoic acid) (ACPA) as an initiator. Well-define...
Saved in:
Published in: | Macromolecules 2013-08, Vol.46 (15), p.6013-6023 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylic acid (AA) in water was studied in detail at different pHs using 4-cyano-4-thiothiopropylsulfanyl pentanoic acid (CTPPA) as a control agent and 4,4′-azobis(4-cyanopentanoic acid) (ACPA) as an initiator. Well-defined hydrophilic macromolecular RAFT agents (PAA-CTPPA) were obtained and further used directly in water for the polymerization of styrene. The corresponding polymerization-induced self-assembly (PISA) process was evaluated at different pHs and it was shown that working in acidic conditions (pH = 2.5) led to well-defined amphiphilic block copolymer particles (Đ < 1.4) of small size (below 50 nm). When the pH increased, the control over the growth of the polystyrene (PS) block was gradually lost. Chain extension experiments of PAA-CTPPA with N-acryloylmorpholine (NAM), a hydrosoluble and non-pH sensitive monomer, performed at different pHs showed that the very first addition–fragmentation steps that occurred in water were impeded when PAA was ionized leading to partial consumption of PAA-CTPPA and thus to PS molar masses higher than expected. Varying the PAA-CTPPA concentration at pH = 2.5 led in all cases to stable particles composed of well-defined block copolymers with PS segments of different molar masses. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma401070k |