Loading…
Standing waves of the complex Ginzburg–Landau equation
We prove the existence of nontrivial standing wave solutions of the complex Ginzburg–Landau equation ϕt=eiθΔϕ+eiγ|ϕ|αϕ+kϕ on a bounded domain with Dirichlet boundary conditions. Our result requires that α>0 be sufficiently small.
Saved in:
Published in: | Nonlinear analysis 2014-07, Vol.103, p.26-32 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove the existence of nontrivial standing wave solutions of the complex Ginzburg–Landau equation ϕt=eiθΔϕ+eiγ|ϕ|αϕ+kϕ on a bounded domain with Dirichlet boundary conditions. Our result requires that α>0 be sufficiently small. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2014.03.001 |