Loading…

Standing waves of the complex Ginzburg–Landau equation

We prove the existence of nontrivial standing wave solutions of the complex Ginzburg–Landau equation ϕt=eiθΔϕ+eiγ|ϕ|αϕ+kϕ on a bounded domain with Dirichlet boundary conditions. Our result requires that α>0 be sufficiently small.

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2014-07, Vol.103, p.26-32
Main Authors: Cazenave, Thierry, Dickstein, Flávio, Weissler, Fred B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove the existence of nontrivial standing wave solutions of the complex Ginzburg–Landau equation ϕt=eiθΔϕ+eiγ|ϕ|αϕ+kϕ on a bounded domain with Dirichlet boundary conditions. Our result requires that α>0 be sufficiently small.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2014.03.001