Loading…
Delays Induce an Exponential Memory Gap for Rendezvous in Trees
The aim of rendezvous in a graph is meeting of two mobile agents at some node of an unknown anonymous connected graph. In this article, we focus on rendezvous in trees, and, analogously to the efforts that have been made for solving the exploration problem with compact automata, we study the size of...
Saved in:
Published in: | ACM transactions on algorithms 2013-03, Vol.9 (2), p.1-24 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of rendezvous in a graph is meeting of two mobile agents at some node of an unknown anonymous connected graph. In this article, we focus on rendezvous in trees, and, analogously to the efforts that have been made for solving the exploration problem with compact automata, we study the size of memory of mobile agents that permits to solve the rendezvous problem deterministically. We assume that the agents are identical, and move in synchronous rounds.
We first show that if the delay between the starting times of the agents is
arbitrary
, then the lower bound on memory required for rendezvous is
Ω
(log
n
) bits, even for the line of length
n
. This lower bound meets a previously known upper bound of
O
(log
n
) bits for rendezvous in arbitrary graphs of size at most
n
. Our main result is a proof that the amount of memory needed for rendezvous
with simultaneous start
depends essentially on the number ℓ of leaves of the tree, and is exponentially less impacted by the number
n
of nodes. Indeed, we present two identical agents with
O
(log ℓ + log log
n
) bits of memory that solve the rendezvous problem in all trees with at most
n
nodes and at most ℓ leaves. Hence, for the class of trees with polylogarithmically many leaves, there is an exponential gap in minimum memory size needed for rendezvous between the scenario with arbitrary delay and the scenario with delay zero. Moreover, we show that our upper bound is optimal by proving that
Ω
(log ℓ + log log
n
) bits of memory are required for rendezvous, even in the class of trees with degrees bounded by 3. |
---|---|
ISSN: | 1549-6325 1549-6333 |
DOI: | 10.1145/2438645.2438649 |