Loading…
A profile decomposition approach to the $$L^\infty _t(L^{3}_x)$$ Navier–Stokes regularity criterion
In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that st...
Saved in:
Published in: | Mathematische annalen 2013-04, Vol.355 (4), p.1527-1559 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that strong solutions which remain bounded in the space $L^3(R^3)$ do not become singular in finite time, a known result established by Escauriaza, Seregin and Sverak (Uspekhi Mat Nauk 58(2(350)):3-44, 2003) in the context of suitable weak solutions. Here, we use the method of "critical elements" which was recently developed by Kenig and Merle to treat critical dispersive equations. Our main tool is a "profile decomposition" for the Navier-Stokes equations in critical Besov spaces which we develop here. As a byproduct of this tool, assuming a singularity-producing initial datum for Navier-Stokes exists in a critical Lebesgue or Besov space, we show there is one with minimal norm, generalizing a result of Rusin and Sverak (J Funct Anal 260(3):879-891, 2011). |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-012-0830-0 |