Loading…

A profile decomposition approach to the $$L^\infty _t(L^{3}_x)$$ Navier–Stokes regularity criterion

In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that st...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2013-04, Vol.355 (4), p.1527-1559
Main Authors: Gallagher, Isabelle, Koch, Gabriel S., Planchon, Fabrice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1241-84fc476f5fd377b9ab1f499c3cc4e8d77016489de1d712f147b7066ae667e8763
cites cdi_FETCH-LOGICAL-c1241-84fc476f5fd377b9ab1f499c3cc4e8d77016489de1d712f147b7066ae667e8763
container_end_page 1559
container_issue 4
container_start_page 1527
container_title Mathematische annalen
container_volume 355
creator Gallagher, Isabelle
Koch, Gabriel S.
Planchon, Fabrice
description In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that strong solutions which remain bounded in the space $L^3(R^3)$ do not become singular in finite time, a known result established by Escauriaza, Seregin and Sverak (Uspekhi Mat Nauk 58(2(350)):3-44, 2003) in the context of suitable weak solutions. Here, we use the method of "critical elements" which was recently developed by Kenig and Merle to treat critical dispersive equations. Our main tool is a "profile decomposition" for the Navier-Stokes equations in critical Besov spaces which we develop here. As a byproduct of this tool, assuming a singularity-producing initial datum for Navier-Stokes exists in a critical Lebesgue or Besov space, we show there is one with minimal norm, generalizing a result of Rusin and Sverak (J Funct Anal 260(3):879-891, 2011).
doi_str_mv 10.1007/s00208-012-0830-0
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00936368v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00936368v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1241-84fc476f5fd377b9ab1f499c3cc4e8d77016489de1d712f147b7066ae667e8763</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwAGweMtDBcI4T2xmrCihSBAOwoVquY9NAWkd2qKgQEu_AG_IkpCpiuZP---4fPoROKZxTAHERAVKQBGhKQDIgsIcGNGMpoRLEPhr055zkktFDdBTjCwAwgHyA7Bi3wbu6sbiyxi9bH-uu9ius2z7XZoE7j7uFxUlSzp7qles2WHVn5eyDfar3UZLgW72ubfj5-r7v_KuNONjnt0aHugdNP23o247RgdNNtCd_e4gery4fJlNS3l3fTMYlMTTNKJGZM5ngLncVE2Je6Dl1WVEYZkxmZSUEUJ7JorK0EjR1NBNzAZxry7mwUnA2RKNd70I3qg31UoeN8rpW03GpthlAwTjjck17lu5YE3yMwbr_Bwpq61TtnKreqdo6VcB-Aeebac0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A profile decomposition approach to the $$L^\infty _t(L^{3}_x)$$ Navier–Stokes regularity criterion</title><source>Springer Nature</source><creator>Gallagher, Isabelle ; Koch, Gabriel S. ; Planchon, Fabrice</creator><creatorcontrib>Gallagher, Isabelle ; Koch, Gabriel S. ; Planchon, Fabrice</creatorcontrib><description>In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that strong solutions which remain bounded in the space $L^3(R^3)$ do not become singular in finite time, a known result established by Escauriaza, Seregin and Sverak (Uspekhi Mat Nauk 58(2(350)):3-44, 2003) in the context of suitable weak solutions. Here, we use the method of "critical elements" which was recently developed by Kenig and Merle to treat critical dispersive equations. Our main tool is a "profile decomposition" for the Navier-Stokes equations in critical Besov spaces which we develop here. As a byproduct of this tool, assuming a singularity-producing initial datum for Navier-Stokes exists in a critical Lebesgue or Besov space, we show there is one with minimal norm, generalizing a result of Rusin and Sverak (J Funct Anal 260(3):879-891, 2011).</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-012-0830-0</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Analysis of PDEs ; Functional Analysis ; Mathematics</subject><ispartof>Mathematische annalen, 2013-04, Vol.355 (4), p.1527-1559</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1241-84fc476f5fd377b9ab1f499c3cc4e8d77016489de1d712f147b7066ae667e8763</citedby><cites>FETCH-LOGICAL-c1241-84fc476f5fd377b9ab1f499c3cc4e8d77016489de1d712f147b7066ae667e8763</cites><orcidid>0000-0002-6471-4235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00936368$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallagher, Isabelle</creatorcontrib><creatorcontrib>Koch, Gabriel S.</creatorcontrib><creatorcontrib>Planchon, Fabrice</creatorcontrib><title>A profile decomposition approach to the $$L^\infty _t(L^{3}_x)$$ Navier–Stokes regularity criterion</title><title>Mathematische annalen</title><description>In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that strong solutions which remain bounded in the space $L^3(R^3)$ do not become singular in finite time, a known result established by Escauriaza, Seregin and Sverak (Uspekhi Mat Nauk 58(2(350)):3-44, 2003) in the context of suitable weak solutions. Here, we use the method of "critical elements" which was recently developed by Kenig and Merle to treat critical dispersive equations. Our main tool is a "profile decomposition" for the Navier-Stokes equations in critical Besov spaces which we develop here. As a byproduct of this tool, assuming a singularity-producing initial datum for Navier-Stokes exists in a critical Lebesgue or Besov space, we show there is one with minimal norm, generalizing a result of Rusin and Sverak (J Funct Anal 260(3):879-891, 2011).</description><subject>Analysis of PDEs</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhi0EEqXwAGweMtDBcI4T2xmrCihSBAOwoVquY9NAWkd2qKgQEu_AG_IkpCpiuZP---4fPoROKZxTAHERAVKQBGhKQDIgsIcGNGMpoRLEPhr055zkktFDdBTjCwAwgHyA7Bi3wbu6sbiyxi9bH-uu9ius2z7XZoE7j7uFxUlSzp7qles2WHVn5eyDfar3UZLgW72ubfj5-r7v_KuNONjnt0aHugdNP23o247RgdNNtCd_e4gery4fJlNS3l3fTMYlMTTNKJGZM5ngLncVE2Je6Dl1WVEYZkxmZSUEUJ7JorK0EjR1NBNzAZxry7mwUnA2RKNd70I3qg31UoeN8rpW03GpthlAwTjjck17lu5YE3yMwbr_Bwpq61TtnKreqdo6VcB-Aeebac0</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Gallagher, Isabelle</creator><creator>Koch, Gabriel S.</creator><creator>Planchon, Fabrice</creator><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6471-4235</orcidid></search><sort><creationdate>201304</creationdate><title>A profile decomposition approach to the $$L^\infty _t(L^{3}_x)$$ Navier–Stokes regularity criterion</title><author>Gallagher, Isabelle ; Koch, Gabriel S. ; Planchon, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1241-84fc476f5fd377b9ab1f499c3cc4e8d77016489de1d712f147b7066ae667e8763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of PDEs</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallagher, Isabelle</creatorcontrib><creatorcontrib>Koch, Gabriel S.</creatorcontrib><creatorcontrib>Planchon, Fabrice</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallagher, Isabelle</au><au>Koch, Gabriel S.</au><au>Planchon, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A profile decomposition approach to the $$L^\infty _t(L^{3}_x)$$ Navier–Stokes regularity criterion</atitle><jtitle>Mathematische annalen</jtitle><date>2013-04</date><risdate>2013</risdate><volume>355</volume><issue>4</issue><spage>1527</spage><epage>1559</epage><pages>1527-1559</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that strong solutions which remain bounded in the space $L^3(R^3)$ do not become singular in finite time, a known result established by Escauriaza, Seregin and Sverak (Uspekhi Mat Nauk 58(2(350)):3-44, 2003) in the context of suitable weak solutions. Here, we use the method of "critical elements" which was recently developed by Kenig and Merle to treat critical dispersive equations. Our main tool is a "profile decomposition" for the Navier-Stokes equations in critical Besov spaces which we develop here. As a byproduct of this tool, assuming a singularity-producing initial datum for Navier-Stokes exists in a critical Lebesgue or Besov space, we show there is one with minimal norm, generalizing a result of Rusin and Sverak (J Funct Anal 260(3):879-891, 2011).</abstract><pub>Springer Verlag</pub><doi>10.1007/s00208-012-0830-0</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-6471-4235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2013-04, Vol.355 (4), p.1527-1559
issn 0025-5831
1432-1807
language eng
recordid cdi_hal_primary_oai_HAL_hal_00936368v1
source Springer Nature
subjects Analysis of PDEs
Functional Analysis
Mathematics
title A profile decomposition approach to the $$L^\infty _t(L^{3}_x)$$ Navier–Stokes regularity criterion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20profile%20decomposition%20approach%20to%20the%20$$L%5E%5Cinfty%20_t(L%5E%7B3%7D_x)$$%20Navier%E2%80%93Stokes%20regularity%20criterion&rft.jtitle=Mathematische%20annalen&rft.au=Gallagher,%20Isabelle&rft.date=2013-04&rft.volume=355&rft.issue=4&rft.spage=1527&rft.epage=1559&rft.pages=1527-1559&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-012-0830-0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00936368v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1241-84fc476f5fd377b9ab1f499c3cc4e8d77016489de1d712f147b7066ae667e8763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true