Loading…
Word-mappings of level 2
A sequence of natural numbers is said to have {\em level k}, for some natural integer $k$, if it can be computed by a deterministic pushdown automaton of level $k$ ([Fratani-Sénizergues, APAL, 2006]). We show here that the sequences of level 2 are exactly the rational formal power series over one un...
Saved in:
Published in: | Theory of computing systems 2013-08, Vol.54, p.111-148 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A sequence of natural numbers is said to have {\em level k}, for some natural integer $k$, if it can be computed by a deterministic pushdown automaton of level $k$ ([Fratani-Sénizergues, APAL, 2006]). We show here that the sequences of level 2 are exactly the rational formal power series over one undeterminate. More generally, we study mappings {\em from words to words} and show that the following classes coincide:\\ - the mappings which are computable by deterministic pushdown automata of level $2$\\ - the mappings which are solution of a system of catenative recurrence equations\\ - the mappings which are definable as a Lindenmayer system of type HDT0L.\\ We illustrate the usefulness of this characterization by proving three statements about formal power series, rational sets of homomorphisms and equations in words. |
---|---|
ISSN: | 1432-4350 1433-0490 |