Loading…
Path-integral invariants in abelian Chern–Simons theory
We consider the U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge...
Saved in:
Published in: | Nuclear physics. B 2014-05, Vol.882, p.450-484 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin–Turaev surgery invariants. |
---|---|
ISSN: | 0550-3213 1873-1562 |
DOI: | 10.1016/j.nuclphysb.2014.03.009 |