Loading…
Symmetrization, convexity and applications
Based on permutation enumeration of the symmetric group and ‘generalized’ barycentric coordinates on arbitrary convex polytope, we develop a technique to obtain symmetrization procedures for functions that provide a unified framework to derive new Hermite–Hadamard type inequalities. We also present...
Saved in:
Published in: | Applied mathematics and computation 2014-08, Vol.240, p.149-160 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on permutation enumeration of the symmetric group and ‘generalized’ barycentric coordinates on arbitrary convex polytope, we develop a technique to obtain symmetrization procedures for functions that provide a unified framework to derive new Hermite–Hadamard type inequalities. We also present applications of our results to the Wright-convex functions with special emphasis on their key role in convexity. In one dimension, we obtain (up to a positive multiplicative constant) a method of symmetrization recently introduced by Dragomir (2014) [3], and also by El Farissi et al. (2012/2013) [4]. So our approach can be seen as a multivariate generalization of their method. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2014.04.063 |