Loading…

Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics

The control over DNA elongation in nanofluidic devices holds great potential for large-scale genomic analysis. So far, the manipulation of DNA in nanochannels has been mostly carried out with electrophoresis and seldom with hydrodynamics, although the physics of soft matter in nanoscale flows has ra...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2013-08, Vol.46 (15), p.6195-6202
Main Authors: He, Qihao, Ranchon, Hubert, Carrivain, Pascal, Viero, Yannick, Lacroix, Joris, Blatché, Charline, Daran, Emmanuelle, Victor, Jean-Marc, Bancaud, Aurélien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a424t-2a40145edbed9b1c20994e88c1104b9f381b113589a2d6fa535452fb44a69e3d3
cites cdi_FETCH-LOGICAL-a424t-2a40145edbed9b1c20994e88c1104b9f381b113589a2d6fa535452fb44a69e3d3
container_end_page 6202
container_issue 15
container_start_page 6195
container_title Macromolecules
container_volume 46
creator He, Qihao
Ranchon, Hubert
Carrivain, Pascal
Viero, Yannick
Lacroix, Joris
Blatché, Charline
Daran, Emmanuelle
Victor, Jean-Marc
Bancaud, Aurélien
description The control over DNA elongation in nanofluidic devices holds great potential for large-scale genomic analysis. So far, the manipulation of DNA in nanochannels has been mostly carried out with electrophoresis and seldom with hydrodynamics, although the physics of soft matter in nanoscale flows has raised considerable interest over the past decade. In this report the migration of DNA is studied in nanochannels of lateral dimension spanning 100 to 500 nm using both actuation principles. We show that the relaxation kinetics are 3-fold slowed down and the extension increases up to 3-fold using hydrodynamics. We propose a model to account for the onset in elongation with the flow, which assumes that DNA response is determined by the shear-driven lift forces mediated by the proximity of the channels’ walls. Overall, we suggest that hydrodynamic actuation allows for an improved manipulation of DNA in nanochannels.
doi_str_mv 10.1021/ma400575h
format article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01053101v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d184602476</sourcerecordid><originalsourceid>FETCH-LOGICAL-a424t-2a40145edbed9b1c20994e88c1104b9f381b113589a2d6fa535452fb44a69e3d3</originalsourceid><addsrcrecordid>eNptkE1PAjEQhhujiYge_Ad78eBhdaYf7PZIUMQE8SLnzWx3KyVLS1o04d8LYuDiaTKT530zeRi7RXhA4Pi4IgmgCrU4Yz1UHHJVCnXOegBc5prr4pJdpbQEQFRS9Nh4FLwNcUUbFzx12Rt5t_7qftcs2OxpNsycz2bkg1mQ922Xsnly_jObbJsYmq2nlTPpml1Y6lJ78zf7bD5-_hhN8un7y-toOM1JcrnJ-e47lKpt6rbRNRoOWsu2LA0iyFpbUWKNKFSpiTcDS0ooqbitpaSBbkUj-uz-0LugrlpHt6K4rQK5ajKcVvsbICiBgN94Yk0MKcXWHgMI1V5WdZS1Y-8O7JqSoc5G8salY4AXA1UWHE4cmVQtw1fcOUv_9P0Aq6Nzqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>He, Qihao ; Ranchon, Hubert ; Carrivain, Pascal ; Viero, Yannick ; Lacroix, Joris ; Blatché, Charline ; Daran, Emmanuelle ; Victor, Jean-Marc ; Bancaud, Aurélien</creator><creatorcontrib>He, Qihao ; Ranchon, Hubert ; Carrivain, Pascal ; Viero, Yannick ; Lacroix, Joris ; Blatché, Charline ; Daran, Emmanuelle ; Victor, Jean-Marc ; Bancaud, Aurélien</creatorcontrib><description>The control over DNA elongation in nanofluidic devices holds great potential for large-scale genomic analysis. So far, the manipulation of DNA in nanochannels has been mostly carried out with electrophoresis and seldom with hydrodynamics, although the physics of soft matter in nanoscale flows has raised considerable interest over the past decade. In this report the migration of DNA is studied in nanochannels of lateral dimension spanning 100 to 500 nm using both actuation principles. We show that the relaxation kinetics are 3-fold slowed down and the extension increases up to 3-fold using hydrodynamics. We propose a model to account for the onset in elongation with the flow, which assumes that DNA response is determined by the shear-driven lift forces mediated by the proximity of the channels’ walls. Overall, we suggest that hydrodynamic actuation allows for an improved manipulation of DNA in nanochannels.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma400575h</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological Physics ; Exact sciences and technology ; Miscellaneous ; Natural polymers ; Physicochemistry of polymers ; Physics</subject><ispartof>Macromolecules, 2013-08, Vol.46 (15), p.6195-6202</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a424t-2a40145edbed9b1c20994e88c1104b9f381b113589a2d6fa535452fb44a69e3d3</citedby><cites>FETCH-LOGICAL-a424t-2a40145edbed9b1c20994e88c1104b9f381b113589a2d6fa535452fb44a69e3d3</cites><orcidid>0000-0002-3815-8896 ; 0000-0002-0308-249X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27658720$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01053101$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Qihao</creatorcontrib><creatorcontrib>Ranchon, Hubert</creatorcontrib><creatorcontrib>Carrivain, Pascal</creatorcontrib><creatorcontrib>Viero, Yannick</creatorcontrib><creatorcontrib>Lacroix, Joris</creatorcontrib><creatorcontrib>Blatché, Charline</creatorcontrib><creatorcontrib>Daran, Emmanuelle</creatorcontrib><creatorcontrib>Victor, Jean-Marc</creatorcontrib><creatorcontrib>Bancaud, Aurélien</creatorcontrib><title>Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The control over DNA elongation in nanofluidic devices holds great potential for large-scale genomic analysis. So far, the manipulation of DNA in nanochannels has been mostly carried out with electrophoresis and seldom with hydrodynamics, although the physics of soft matter in nanoscale flows has raised considerable interest over the past decade. In this report the migration of DNA is studied in nanochannels of lateral dimension spanning 100 to 500 nm using both actuation principles. We show that the relaxation kinetics are 3-fold slowed down and the extension increases up to 3-fold using hydrodynamics. We propose a model to account for the onset in elongation with the flow, which assumes that DNA response is determined by the shear-driven lift forces mediated by the proximity of the channels’ walls. Overall, we suggest that hydrodynamic actuation allows for an improved manipulation of DNA in nanochannels.</description><subject>Applied sciences</subject><subject>Biological Physics</subject><subject>Exact sciences and technology</subject><subject>Miscellaneous</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE1PAjEQhhujiYge_Ad78eBhdaYf7PZIUMQE8SLnzWx3KyVLS1o04d8LYuDiaTKT530zeRi7RXhA4Pi4IgmgCrU4Yz1UHHJVCnXOegBc5prr4pJdpbQEQFRS9Nh4FLwNcUUbFzx12Rt5t_7qftcs2OxpNsycz2bkg1mQ922Xsnly_jObbJsYmq2nlTPpml1Y6lJ78zf7bD5-_hhN8un7y-toOM1JcrnJ-e47lKpt6rbRNRoOWsu2LA0iyFpbUWKNKFSpiTcDS0ooqbitpaSBbkUj-uz-0LugrlpHt6K4rQK5ajKcVvsbICiBgN94Yk0MKcXWHgMI1V5WdZS1Y-8O7JqSoc5G8salY4AXA1UWHE4cmVQtw1fcOUv_9P0Aq6Nzqw</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>He, Qihao</creator><creator>Ranchon, Hubert</creator><creator>Carrivain, Pascal</creator><creator>Viero, Yannick</creator><creator>Lacroix, Joris</creator><creator>Blatché, Charline</creator><creator>Daran, Emmanuelle</creator><creator>Victor, Jean-Marc</creator><creator>Bancaud, Aurélien</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3815-8896</orcidid><orcidid>https://orcid.org/0000-0002-0308-249X</orcidid></search><sort><creationdate>20130813</creationdate><title>Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics</title><author>He, Qihao ; Ranchon, Hubert ; Carrivain, Pascal ; Viero, Yannick ; Lacroix, Joris ; Blatché, Charline ; Daran, Emmanuelle ; Victor, Jean-Marc ; Bancaud, Aurélien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a424t-2a40145edbed9b1c20994e88c1104b9f381b113589a2d6fa535452fb44a69e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biological Physics</topic><topic>Exact sciences and technology</topic><topic>Miscellaneous</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Qihao</creatorcontrib><creatorcontrib>Ranchon, Hubert</creatorcontrib><creatorcontrib>Carrivain, Pascal</creatorcontrib><creatorcontrib>Viero, Yannick</creatorcontrib><creatorcontrib>Lacroix, Joris</creatorcontrib><creatorcontrib>Blatché, Charline</creatorcontrib><creatorcontrib>Daran, Emmanuelle</creatorcontrib><creatorcontrib>Victor, Jean-Marc</creatorcontrib><creatorcontrib>Bancaud, Aurélien</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Qihao</au><au>Ranchon, Hubert</au><au>Carrivain, Pascal</au><au>Viero, Yannick</au><au>Lacroix, Joris</au><au>Blatché, Charline</au><au>Daran, Emmanuelle</au><au>Victor, Jean-Marc</au><au>Bancaud, Aurélien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2013-08-13</date><risdate>2013</risdate><volume>46</volume><issue>15</issue><spage>6195</spage><epage>6202</epage><pages>6195-6202</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>The control over DNA elongation in nanofluidic devices holds great potential for large-scale genomic analysis. So far, the manipulation of DNA in nanochannels has been mostly carried out with electrophoresis and seldom with hydrodynamics, although the physics of soft matter in nanoscale flows has raised considerable interest over the past decade. In this report the migration of DNA is studied in nanochannels of lateral dimension spanning 100 to 500 nm using both actuation principles. We show that the relaxation kinetics are 3-fold slowed down and the extension increases up to 3-fold using hydrodynamics. We propose a model to account for the onset in elongation with the flow, which assumes that DNA response is determined by the shear-driven lift forces mediated by the proximity of the channels’ walls. Overall, we suggest that hydrodynamic actuation allows for an improved manipulation of DNA in nanochannels.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma400575h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3815-8896</orcidid><orcidid>https://orcid.org/0000-0002-0308-249X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2013-08, Vol.46 (15), p.6195-6202
issn 0024-9297
1520-5835
language eng
recordid cdi_hal_primary_oai_HAL_hal_01053101v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Biological Physics
Exact sciences and technology
Miscellaneous
Natural polymers
Physicochemistry of polymers
Physics
title Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20Manipulation%20of%20DNA%20in%20Nanochannels%20Using%20Hydrodynamics&rft.jtitle=Macromolecules&rft.au=He,%20Qihao&rft.date=2013-08-13&rft.volume=46&rft.issue=15&rft.spage=6195&rft.epage=6202&rft.pages=6195-6202&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma400575h&rft_dat=%3Cacs_hal_p%3Ed184602476%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a424t-2a40145edbed9b1c20994e88c1104b9f381b113589a2d6fa535452fb44a69e3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true