Loading…

A long-lived lunar dynamo powered by core crystallization

The Moon does not possess an internally generated magnetic field at the present day, but extensive evidence shows that such a field existed between at least 4.2 and 3.56 Ga ago. The existence of a metallic lunar core is now firmly established, and we investigate the influence of inner core growth on...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2014-09, Vol.401, p.251-260
Main Authors: Laneuville, M., Wieczorek, M.A., Breuer, D., Aubert, J., Morard, G., Rückriemen, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Moon does not possess an internally generated magnetic field at the present day, but extensive evidence shows that such a field existed between at least 4.2 and 3.56 Ga ago. The existence of a metallic lunar core is now firmly established, and we investigate the influence of inner core growth on generating a lunar core dynamo. We couple the results of a 3-D spherical thermochemical convection model of the lunar mantle to a 1-D thermodynamic model of its core. The energy and entropy budget of the core are computed to determine the inner core growth rate and its efficiency to power a dynamo. Sulfur is considered to be the main alloying element and we investigate how different sulfur abundances and initial core temperatures affect the model outcomes. For reasonable initial conditions, a solid inner core between 100 and 200 km is always produced. During its growth, a surface magnetic field of about 0.3 μT is generated and is predicted to last several billion years. Though most simulations predict the existence of a core dynamo at the present day, one way to stop magnetic field generation when the inner core is growing is by a transition between a bottom–up and top–down core crystallization scheme when the sulfur content becomes high enough in the outer core. According to this hypothesis, a model with about 6 to 8 wt.% sulfur in the core would produce a 120–160 km inner core and explain the timing of the lunar dynamo as constrained by paleomagnetic data. •Inner core crystallization is expected for a wide range of light element contents.•Inner core crystallization can power a long lasting core dynamo.•Transition to the Fe–snow crystallization regime may explain lack of magnetic field today.
ISSN:0012-821X
1385-013X
DOI:10.1016/j.epsl.2014.05.057