Loading…
Hierarchy of LMI conditions for the stability analysis of time-delay systems
Assessing stability of time-delay systems based on the Lyapunov–Krasovskii functionals has been the subject of many contributions. Most of the results are based, first, on an a priori design of functionals and, finally, on the use of the famous Jensen’s inequality. In contrast with this design proce...
Saved in:
Published in: | Systems & control letters 2015-07, Vol.81, p.1-7 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assessing stability of time-delay systems based on the Lyapunov–Krasovskii functionals has been the subject of many contributions. Most of the results are based, first, on an a priori design of functionals and, finally, on the use of the famous Jensen’s inequality. In contrast with this design process, the present paper aims at providing a generic set of integral inequalities which are asymptotically non conservative and then to design functionals driven by these inequalities. The resulting stability conditions form a hierarchy of LMI which is competitive with the most efficient existing methods (delay-partitioning, discretization and sum of squares), in terms of conservatism and of complexity. Finally, some examples show the efficiency of the method. |
---|---|
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2015.03.007 |