Loading…
Strong edge-coloring of (3,Δ)-bipartite graphs
A strong edge-coloring of a graph G is an assignment of colors to edges such that every color class induces a matching. We here focus on bipartite graphs whose one part is of maximum degree at most 3 and the other part is of maximum degree Δ. For every such graph, we prove that a strong 4Δ-edge-colo...
Saved in:
Published in: | Discrete mathematics 2016-01, Vol.339 (1), p.391-398 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A strong edge-coloring of a graph G is an assignment of colors to edges such that every color class induces a matching. We here focus on bipartite graphs whose one part is of maximum degree at most 3 and the other part is of maximum degree Δ. For every such graph, we prove that a strong 4Δ-edge-coloring can always be obtained. Together with a result of Steger and Yu, this result confirms a conjecture of Faudree, Gyárfás, Schelp and Tuza for this class of graphs. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2015.08.026 |