Loading…
Microstructural heterogeneity and its relationship to the strength of martensite
The complex microstructure of ferrous martensite is reflected in its complex mechanical response. In an attempt to highlight how carbon redistribution during quenching and/or low temperature tempering can affect mechanical response, a set of controlled experiments were performed. By rapidly quenchin...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-06, Vol.638, p.329-339 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The complex microstructure of ferrous martensite is reflected in its complex mechanical response. In an attempt to highlight how carbon redistribution during quenching and/or low temperature tempering can affect mechanical response, a set of controlled experiments were performed. By rapidly quenching samples it was possible to limit autotempering allowing the evolution of mechanical response and microstructure to be followed with low temperature tempering. This was compared to a situation where the material was more slowly quenched, leading to a highly autotempered state. The gradual transition from elastic to plastic deformation is interpreted based on possible sources of microstructural heterogeneity. Lath-to-lath variations of dislocation density are discussed as a contributor to the development of microstructural heterogeneity during tempering. These results shed light on the possible origins of the continuous-composite like mechanical response of lath martensite proposed in recent work. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2015.04.088 |