Loading…
Breakup length of AC electrified jets in a microfluidic flow-focusing junction
Electroactuation of liquid–liquid interfaces offers promising methods to actively modulate droplet formation in droplet-based microfluidic systems. Here, flow-focusing junctions are coupled to electrodes to control droplet production in the well-known jetting regime. In this regime, a convective ins...
Saved in:
Published in: | Microfluidics and nanofluidics 2015-10, Vol.19 (4), p.787-794 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electroactuation of liquid–liquid interfaces offers promising methods to actively modulate droplet formation in droplet-based microfluidic systems. Here, flow-focusing junctions are coupled to electrodes to control droplet production in the well-known jetting regime. In this regime, a convective instability develops leading to droplet formation at the end of a thin and uniform, long liquid finger. We show that in AC electric fields, the jet length is a function of both the magnitude of the applied voltage and the electrical parameters such as the frequency of the AC field and the conductivity of the dispersed phase. We explain that dependency using a simple transmission line model along the liquid jet. An optimum frequency to maximize the liquid ligament length is experimentally observed. Such length simply cannot be obtained by other means under the same operating conditions, in the absence of the AC signal. At low frequency, we reach a transition from a well-behaved, uniform jet brought about near the optimum frequency to highly unstable liquid structures in which axisymmetry is lost rather abruptly. |
---|---|
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-015-1603-3 |