Loading…
Proper Generalized Decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimization
First, the effectivity of classical Proper Generalized Decomposition (PGD) computational methods is analyzed on a one dimensional transient diffusion benchmark problem, with a moving load. Classical PGD methods refer to Galerkin, Petrov–Galerkin and Minimum Residual formulations. A new and promising...
Saved in:
Published in: | Advanced modeling and simulation in engineering sciences 2015-07, Vol.2 (1), Article 17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First, the effectivity of classical Proper Generalized Decomposition (PGD) computational methods is analyzed on a one dimensional transient diffusion benchmark problem, with a moving load. Classical PGD methods refer to Galerkin, Petrov–Galerkin and Minimum Residual formulations. A new and promising PGD computational method based on the Constitutive Relation Error concept is then proposed and provides an improved, immediate and robust reduction error estimation. All those methods are compared to a reference Singular Value Decomposition reduced solution using the energy norm. Eventually, the variable separation assumption itself (here time and space) is analyzed with respect to the loading velocity. |
---|---|
ISSN: | 2213-7467 2213-7467 |
DOI: | 10.1186/s40323-015-0038-4 |